STATE OF CALIFORNIA EARL WARREN, Governor DEPARTMENT OF NATURAL RESOURCES WARREN T. HANNUM, Director

DIVISION OF MINES FERRY BUILDING, SAN FRANCISCO 11 OLAF P. JENKINS, Chief

SAN FRANCISCO

SPECIAL REPORT 19

JUNE 1952

GEOLOGY AND CERAMIC PROPERTIES

OF THE

IONE FORMATION, BUENA VISTA AREA AMADOR COUNTY, CALIFORNIA

By JOSEPH A. PASK and MORT D. TURNER

Digitized by the Internet Archive in 2012 with funding from University of California, Davis Libraries

http://archive.org/details/geologyceramicpr19pask

GEOLOGY AND CERAMIC PROPERTIES OF THE IONE FORMATION. BUENA VISTA AREA. AMADOR COUNTY, CALIFORNIA

By JOSEPH A. PASK * AND MORT D. TURNER **

0	UT	L	N	E	OF	RI	EΡ	ORT	•
---	----	---	---	---	----	----	----	-----	---

		Pag
Δ	bstract	_ 3
I	ntroduction	_ 4
7	Iethods of investigation	_ 5
	Geology	_ 5
	Ceramic tests	_ 6
Δ	application of differential thermal analysis to clay mineralogy_	_ 7
	Standard clay minerals	_ 7
	Variations in kaolinite group	_ 10
Ľ	Descriptive geology	
	Bedrock series	
	Amador group	
	Mariposa slate	
	Tertiary system	
	Eocenc (?) pre-Ione beds	
	Eccene Ione formation	
	Miocene (?) Valley Springs formation Quaternary system	
	Terrace deposits	
	Recent alluvium	
e	eologic history	
	Conomic geology	
	Clay	
	Other minerals	
I.	alne of ceramic test in geologic investigation	
	elected bibliography	
")	ppendix	- 27
	Record of drull holes in Buena Vista area	- 21
	Chemical analyses	- 123

Illustrations

Page

Plate	1.	Geologic map of Buena Vista area In po	cket
		Geologic structure sections Λ-B through Bnena Vista area In po	cket
		Geologic structure sections Λ -C through Buena Vista area In po	cket
	4.	Log of hole 18-1 showing ceramic data In po	cket
Figure	1.	Index map of central California showing location of Buena Vista area	5
	2.	Diagrammatic representation of the crystal structure of kaolinite	6
	8 .	Differential thermal analyses of standard clay min-	_
		erals	7
		Diagrammatic representation of the crystal structure of illite	8
	5.	Diagrammatic representation of the crystal structure of montmorillonite	9
	6.	Diagrammatic representation of the crystal structure of montmorillonite	9
	7.	Differential thermal analyses of kaolinitic-type miner- als from the Bueua Vista area	10
	8.	Differential thermal analyses of kaolinite and non- kaolinitic minerals from the Buena Vista arca	11
	9.	Photo of Buena Vista area	
		Photo of greenstone ridge	
		Photo of greenstone ridge	
		Photo of Woolford clay pit	
	13.	Photo of Fancher clay pit	17
		Photo of Kaolin-Fye sand pit	
		Photo of wax-extraction plant	
		Photo of Fancher clay pit	
• Asse	ocia	- ate Professor of Ceramic Engineering, Division of Min	eral

Technology, College of Engineering, University of California at

Berkeley. ** Assistant Mining Geologist, California Division of Mines. Manu-script submitted for publication November, 1951.

111	I hoto of Chitwood chay pittan and a second second	- L
18.	Photo of Chitwood clay	21
19.	Photo of Buena Vista Buttes	$\underline{22}$
20.	Photo of south side of Buena Vista Mesa	23
21.	Photo of terrace gravel resting on Cheney Hill clay	$\underline{23}$
22.	Photo of channel cut into upper Ione brown sandstone	$\underline{23}$
23.	Photo of old gold-placer workings in alluvium	24

17 Director of Obitemand alars with

24. Relation between differential thermal analyses, fired color, and pyrometric cone equivalent_____ 25

ABSTRACT

The Buena Vista area described in this report lies in the low foothills of the Sierra Nevada in southeastern Amador County, south of Ione. It contains commercially important clay beds of the Ione formation, Eoceue in age, which were deposited in a tropical or semi-tropical climatic environment.

Surface geology was mapped and a study was made of the geology and mineralogy of the clay from samples secured from drill-hole cores. Ceramic tests, consisting of differential thermal analysis, pyrometric cone equivalent determination, and fired color of samples containing clay were used as aids in this study. It was found that the pyrometric cone equivalent (refractoriness) of a clay could be estimated from a knowledge of the differential thermal analysis and fired color of the clay. Because differential thermal analysis and fired color may be obtained more quickly, easily, and cheaply than pyrometric cone equivalent by standard procedure, this method of determining approximate refractoriness will be of great assistance to the geologist and miner looking for refractory clay.

The clay minerals of the area were found to be members of the kaolinite group, and hy using differential thermal analysis three types and several subtypes of kaolinite group clay minerals were identified. These types and subtypes were found to be useful and valid aids in geologic correlation of members, and even lentils, of the lone formation.

Underlying the Eocene sediments is the basement, or bedrock series of the Sierra Nevada. The oldest of these rocks exposed in the area consists of meta-andesites and related greenstones of the Upper Jurassic Amador group which are overlain by the Upper Jurassic Mariposa slate. One drill hole in the area reached the Mariposa slate below the overlying Tertiary cover. The Jurassic rocks were folded and metamorphosed at the close of the Jurassic period. Clay and sand of an unnamed formation were found overlying the basement rocks and underlying the Ione formation in a number of drill holes. The clay and sand may also be of Eocene age, but their lithology does not indicate deposition in a tropical environment. After the pre-lone sedimentation the climate changed to one which was more tropical and the surface rocks were deeply weathered. Laterite was formed on outerops of greenstone and has furnished some of the source material for the refractory clays in the later Ione sediments.

The pre-lone sediments are overlain unconformably by the lone formation which, in the Buena Vista area, is composed of two members separated by an unconformity.

The lower member of the Ione formation contains most of the commercial clay of the area and is characterized by the rarity of chlorite, biotite, and certain types of clays. It is divisible into three lentils in the Buena Vista area. The lower lentil contains the Edwin clay-which is mined near the town of Ione-and reworked laterite. The middle lentil contains the lignitic coal beds of the area. The upper lentil contains the Cheney Hill clays and the white Ione sand.

The upper member of the lone formation is predominantly sandy and contains two mappable units : a hard white sandstone at the top of the member, and the Chitwood clay in the upper part of the member.

The degree of alteration of minerals in the upper member of the Ione formation indicates that the climate was becoming more temperate than during the deposition of the lower member. Temperate climate continued into the later Tertiary epochs; the Valley Springs and Mehrten formations were formed in this climate. Meanwhile the Sierra Nevada began to rise essentially as a westward tilted block. The uplift increased the gradient of the rivers which began to cut deep eauvous rapidly.

At the close of the time of deposition of the Ione formation and during the early Miocene there was a long period of erosion, followed by the deposition of volcanic ash represented by the rhyolitic Valley Springs formation. Rhyolitic volcanism gave way to andesitic volcanism in the upper Miocene or Pliocene and the thick mantle of andesite agglomerate of the Mehrten formation accumulated over the entire area, Subsequent erosion, accelerated by the continued uptilting of the Sierra Nevada, removed all of the andesitic material and much of the rhyolitic ash from the Buena Vista area. During later stages of erosion, terraces were formed, mantled with the deposits of auriferons gravels derived from exhamed Eccene gravel channels which lay on the basement surface concealed by the Tertiary volcanic cover.

INTRODUCTION

Clays of the kaolinitic type are important raw materials for a number of industries. In California such clays have been exploited to some extent. It is desirable to add to knowledge of California clays, and to investigate the geology of as many known clay areas as possible.

At the close of World War 11 a series of 17 holes with a total footage of 4225 feet was drilled in Jackson Valley, southwest of the village of Buena Vista in southwest Amador County. The individual holes ranged in depth from 63 feet to 395 feet and were from 680 feet to 2350 feet apart horizontally. Summary logs and partial cores of these holes were given to the Division of Mines in 1948. Because these cores represented a unique opportunity for detailed study of the economically important Ione formation, the Division of Mines and the Ceramic Engineering Laboratories of the University of California instituted a joint study of the geology and clays of the Buena Vista area.

The logging of the cores gave a detailed lithologic eolnmn for each hole but this was not sufficient to allow correlation of individual beds from hole to hole, except in a few places. Mapping of the surface geology, experimentation with various methods of graphic presentation, and utilization of a number of ceramic techniques were necessary before a picture of the stratigraphy could be developed. The ceramic techniques, specifically differential thermal analysis, fired color, and pyrometric cone equivalent, are referred to as ceramic in the sense that they are extensively used by ceramists and that they depend upon the application of heat. Differential thermal analysis is primarily of value in aiding in the determination of the mineralogical composition. The fired color and pyrometric cone equivalent tests, in addition to providing a differentiating factor, are also of economie importance because they help to ascertain the potential value of a clay to the ceramic industry.

The purpose of the investigation was to obtain information about the detailed stratigraphy of the Tertiary sediments of the area, the position of the already exploited elay deposits in the stratigraphic sequence, the location and character of unexplored clay deposits, and the value of ceramic testing techniques as an aid in geologic investigations.

Although the geologic study was the work of M. D. Turner and the ceramic study the work of Joseph A. Pask, the interpretations and conclusions reached in each section were the result of mutual effort.

Acknowledgments. The project was aided by research grants from the Institute of Engineering Research of the College of Engineering of the University of California at Berkeley, which paid part of the eost of logging the drill cores and paid all of the cost of the ceramic testing.

The project was greatly aided by Val Freeman, who assisted in logging the drill cores, plotted the results of the logging, and fired the chip samples; by Maurice Warner, who ran the differential thermal analyses; by Ralph Adamo, who determined the pyrometric cone equivalents and ran color determinations on fired clay samples; and by Samuel R. Hoffman, who assisted with the plane table mapping.

Jack Fancher and F. M. Ringer, ranchers of the Buena Vista area, furnished valuable information concerning the history of clay production in the area. T. C. Slater of the Calaveras Cement Company, and Raymond Drew of the American Lignite Products Company cooperated by providing the logs of holes which have been drilled in prospecting for lignite, clay, and glass sand.

Geography. The Buena Vista area is in the low foothills of the Sierra Nevada between the Cosumnes and Mokelumne Rivers, about 4 miles south of Ione and 10 miles west of Jackson, an area roughly rectangular in shape and covering about 5 square miles. Elevations range from 225 feet on Jackson Creek to 848 feet at the top of Bnena Vista Peak.

The Buena Vista area is a part of the Arroyo Seeo dissected pediment as described by Piper.¹ The present topography was formed during the Victor epoch. The entire area is drained by Jackson Creek which heads to the northeast on the middle slopes of the Sierra Nevada and flows past Buena Vista from east to west in a mile-wide flood plain that bisects the area. Jackson Creek joins Dry Creek a few miles west of Buena Vista.

In the north the hills are smoothly rounded and rise more than 150 feet above Jackson Valley. Bare rock knobs and cliffs are common only along the greenstone ridge. In the south the lower hills are smooth and rounded like those across Jackson Creek, but at a higher elevation rocky outcrops and lines of low eliffs have been developed in the Valley Springs formation. The most prominent topographic features are the Buena Vista Peaks, which are capped by rhyolite cliffs nearly 100 feet high.

The climate of the Sierran foothills is Mediterranean, with eool wet winters and hot dry summers. The average annual precipitation is about 21 inches and falls almost entirely as rain from October to May. Snow is unusual but freezing temperatures are expected at night from December to February. Summer temperatures of over 100° F. are common.² As a result of the seasonal rainfall the streams are full and swift during the winter, whereas in the summer they are completely dry. Jackson Creek. however, contains water through most of the year.

The flora also reflects the fluctuating water supply by maturing in late spring. The hills are covered with trees and shrubs, in places so thickly that passage is very difficult for a person on foot. The common shrubs are

Piper, A. M., Gale, H. S., Thomas, H. E., and Robinson, T. W. Geology and ground-water hydrology of the Mokelumne area, Cali-fornia : U. S. Geol. Survey Water-Supply Paper 780, 230 pp., 1939
 Sprague, Malcolm, Climate of California in Climate and Man: U. S Dept. Agr. Yearbook 1941, pp. 793-795, 1941.

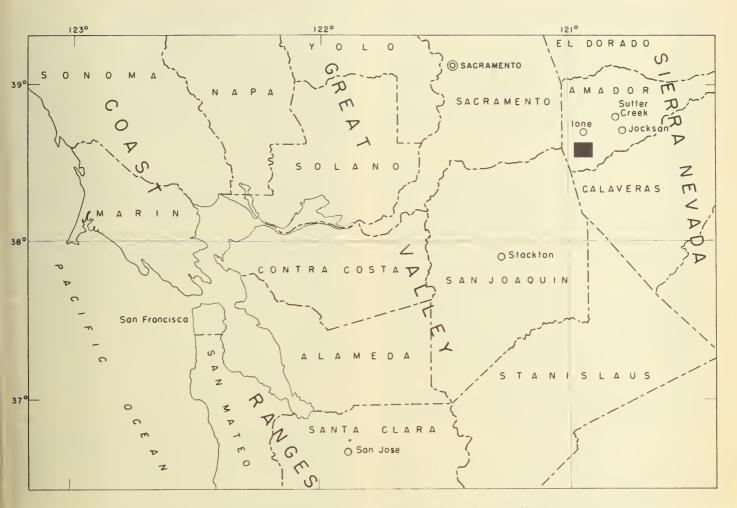


FIGURE 1. Index map of central California showing location of Buena Vista area.

chamise (Adenostoma), manzanita (Arctostaphylos), and poison oak (Rhus). The trees are various species of oak (Quercus) with some scattered digger pines (Pinus sabiniana **Douglas**). Most of the land is pasture and range. The only cultivated areas are on the alluvium of Jackson Valley, where wheat and other grains are raised; water from wells is used for irrigation. The fauna is typical of the Sierran foothills and consists of a large variety of small herbiverous and carniverous animals.

History. After a long period of Indian ocenpancy, the first white people reached the area in 1848, and in that year farming and cattle fattening began in Jackson Valley.³ In 1852, Teodocio Yorba filed a Mexican grant which was finally made to cover a large part of Jackson Valley.⁴ The resultant conflict in titles was not settled until the 1860's. During that time the rich alluvial valley had become a gold-producing region itself, as well as an important source of agricultural products for the Mother Lode region. Coal and clay were later produced in large quantities. The ranches and farms, however, have always remained as the main source of wealth.

METHODS OF INVESTIGATION

Geology

About 17 days were devoted to field study of the surface geology by M. D. Turner during April 1950 and January and April 1951. Outerops were plotted on U. S. Forest Service aerial photographs on a scale of 1:20,000 and on a U. S. Burean of Reclamation topographic map, Drawing No. GI-598-D-2, at a scale of 1:12,000 and a contour interval of 10 feet. Several regions in the northeast were unsurveyed on the original map. A small portion of the unmapped area in the vicinity of the Kaolin-Fye pit was surveyed at the scale of the base map with a plane table, alidade, and stadia rod.

Work in the field stressed the identification of lithologic units of the Tertiary formations so that correlations could be made with units differentiated in the drill cores. Field identifications were supported by petrographic study of 40 thin sections and a number of crushed samples. The greatest aid in correlation was obtained through interpretation of differential thermal analyses of field samples and core samples. The cores, representing 1842 feet of hole, or 43.6 percent of the total footage drilled, were logged. Each identifiable unit was described by visual means as to color, texture, and mineral com-

 ⁸ Mason, J. D., History of Amador County, California, p. 189, Oakland, Thompson and West, 1881.
 ⁴ Ibid, pp. 242-250.

position. These data were plotted at a scale of 1 inch equals 1 foot. Chip samples were taken for ceramic testing.

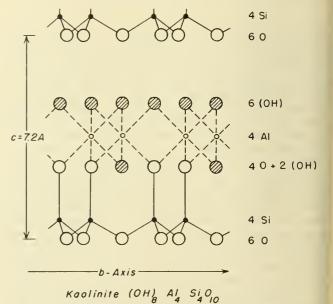
Ceramic Tests

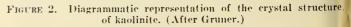
The ecramic tests employed during this work were observation of fired color, pyrometric cone equivalent, and differential thermal analysis. As geologists are generally not familiar with these tests, the following discussion is presented. The many tests usually made to determine the degree of firing and the properties of various types of ceramic bodies or mixtures were not included in the study.

Fired Color. Small pieces of core samples, about 1 inch in diameter, were fired in an electric resistance-wire furnace to a temperature of 1000° C. or 1832° F. These retained their original shape because no fusion or disintegration occurred. Some samples were also powdered to pass a 70-mesh sieve prior to calcination. The fired colors were unchanged, but the powdered form enabled the measurement of percentage reflectance values relative to magnesia as a standard. Measurements were obtained with a Photovolt intrument. The data obtained with a green filter were used for correlation as green light most closely approaches the perceptibility of the human eye.

Clays, being hydrous aluminum silicates, should fire white, but the presence of iron oxide or minerals containing iron oxide will result in some shade of brown or red. This information is valuable, for the appearance of iron oxide in unfired samples is often masked in some manner, usually by earbonaeeous material. The fired color can thus be used as an aid to correlation where the presence of iron oxide is a characteristic.

Pyrometric Cone Equivalent. The pyrometric cone equivalent values were obtained according to the specifications of A. S. T. M. Standard Test C24-46⁵ using a Remney oxy-acetylene furnace. Briefly, the method eonsists of comparing the deformation rates of tetrahedral cones, about 1 inch in height, made from the clays to be tested, with standard cones. Series of numbered standard cones are available whose deformation temperatures are known for given rates of heating.


In a system of oxides reacting according to the phase rule without any, or a small amount of solid solution. exposed to increasing temperatures, liquid will first appear at a eutectic temperature, the amount of liquid being dependent upon the composition. As the number of oxides in the system is increased the temperature at which the liquid appears is lowered because the new euteetic temperature is lower. As the temperature is further increased, the amount of liquid increases until the crystals disappear entirely. Complete melting at one temperature occurs only for compositions corresponding to true compounds or to the eutectic composition. In aluminous silicate systems the liquids formed have high viscosities, or low fluidities, resulting in slow deformation instead of rapid collapse of the cone. Thus, time becomes a factor, but the heat-work for deformation remains the same. A given cone will, therefore, deform at a higher temperature if heated at a faster rate and at a lower temperature if heated at a slower rate. This method of determining "temperature" and refractoriness is of value and used


extensively because it offers an opportunity to compare a number of ceramic mixtures under similar physical conditions.

Differential Thermal Analysis. Differential thermal analysis determines the temperatures at which endothermic (heat-absorbing) and exothermic (heat-evolving) effects take place by measuring the temperature difference between an unknown and a standard (alumina) during a constant rate of increase of the furnaec temperature. For a given mineral these effects are the same and therefore constitute a means of identification. Endothermic effects are caused by vaporization, decomposition, crystal inversion, and fusion; exothermie, by oxidation (usually of carbonaceous material) and crystallization. Other research tools and techniques, however, are used to identify the causes for the various heat effects if the information is desired.

The experimental arrangement used to obtain the curves was similar to those described in the literature.⁶ The main difference was in the use of a recording potentiometer with a range of -0.25 to +0.25 millivolts which allowed a visible record of the differential temperature between the alumina and the unknown throughout an analysis. The thermocouples were platinum vs. platinum -10 percent rhodium. The heating rate was constant at 8.45 mv./hr., equivalent to approximately an average of 13¹° C. or 24° F. per minute. The amount of material per test was approximately 1.8 grams. Changes in heating rates cause slight shifts in peak temperatures because the heat-work for a certain reaction remains constant. In instances where reactions are dependent upon the addition of gases, such as oxidation, or dissipation of gases or vapors, such as decomposition, the shifts are generally greater because they also are dependent upon the ease of movement of the gases or vapors through the sample and the experimental set-up. Peaks are deviations in the curve, both above and below the zero line.

⁶ Spiel, Sidney, Berkelhamer, L. H., Pask, J. A., Davies, Ben, Differential thermal analysis—its application to clays and other aluminous minerals; U. S. Bur, Mines Tech. Paper 664, 81 pp., 1945.

⁶ Manual of A. S. T. M. standards on refractory materials: Am. Soc. Testing Materials, pp. 69-72, 1948.

APPLICATION OF DIFFERENTIAL THERMAL ANALYSIS TO CLAY MINERALOGY

Clay minerals and quartz predominate in the sediments in the Buena Vista area, although other minerals are present in smaller amounts. The accurate determination of the minerals was desirable both for geologie logging and for economic importance. Once curves are obtained for representative type-clay minerals, the differential thermal analyzer enables identification of unknown clays. The analyzer also easily detects minor variations that are difficult to discern by regular petrographie or X-ray methods.

Hydrous minerals, such as elay, mica, tale, amphibole, and the serpentine-enlorite series, show a characteristic endothermie peak at characteristic temperatures due to the evolution of (OH)- ions as water molecules. Sometimes subsequent endothermie peaks due to further breakdown and exothermic peaks due to erystallization become additional identifying characteristics. Characteristic endothermic effects are also obtained for earbonateeontaining minerals.

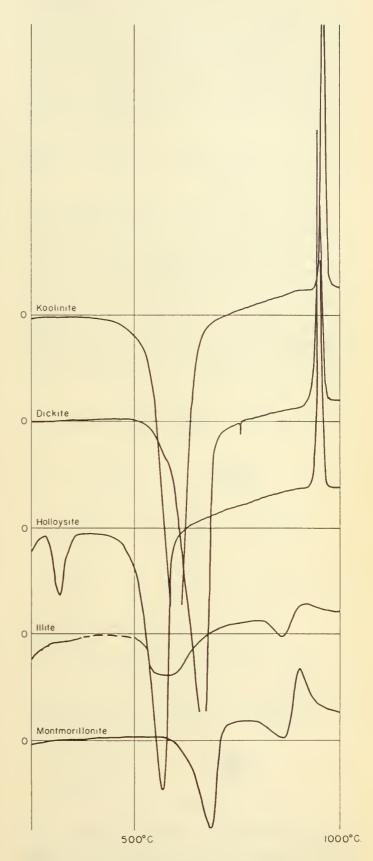
Carbonaeeous material is usually oxidized at relatively low temperatures and over a wide range of temperatures and produces a broad exothermic peak. Anhydrous or undecomposable minerals usually are not discernible unless they undergo an inversion, such as quartz does in changing from the alpha to the beta erystalline form at 573° C. or 1063° F. with an absorption of heat.

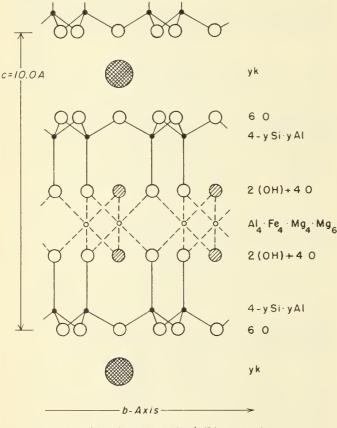
Standard Clay Minerals

The elay minerals are divided into three main groups:⁷ kaolinite, illite or hydrated miea, and montmorillonite. A number of minerals, such as attapulgite and beidellite, do not fit into this elassification and are included in a miseellaneous grouping. Most elay minerals are essentially hydrous aluminum silicates and are layerlike in erystalline structure, A brief description of the structures will offer a greater appreciation of the differences between the minerals.

The sizes of the silieon, aluminum, and oxygen ions are such that a compact packing of oxygen and hydroxyl anions around each of the eations forms (SiO_4) -and $(AlO_6)^{----}$ or $(Al(OH)_6)^{---}$ groups. The superscript refers to the valence charge remaining because of more negative valences from four or six O -or six (OH) - than can be satisfied by Si **** or Al ***. These groupings persist although there are several instances of structure where aluminum substitutes for silieon and has only four oxygen neighbors forming the (AlO₄) ----- group.

The (SiO_4) ---- groups assemble to form a continuous structure in two directions resulting in a silica sheet. Looking at the edge of the sheet all of the oxygen valences on one side have been satisfied whereas on the other side unsatisfied oxygens exist that still have one negative valence or charge. Looking down on the sheet the oxygens are arranged in a hexagonal network. The $(Al O_6)$ ----- groups likewise are packed to form




FIGURE 3. Differential thermal analyses of standard clay minerals.

 ⁷ Brindley, G. W. (editor), X-ray identification and crystal structures of clay minerals: The Mineralogical Society (Clay Minerals Group), 345 pp., London, 1951.
 Grim, R. B., Modern concepts of clay materials: Jour, Geology, vol. 50, pp. 223-275, 1942.
 Marshall, C. E., The colloid chemistry of the silicate minerals, p. 14, Academic Press, 1949.

a continuous assemblage in two directions resulting in a structure similar to a gibbsite sheet. Looking at its edge the oxygen valences on both sides have not been satisfied because of an insufficient number of positive charges from the Al * * *. Thus, a step toward valence balance is taken with each substitution of an $(OH)^-$ ion for an O^{--} ion. Complete substitution results in $(Al(OH)_6)$ === groups. A compact assemblage of these groups so that each $(OH)^{-1}$ ion is shared between two Al⁺⁺⁺ ions forms the mineral gibbsite.

The sheets may assemble in several combinations with isomorphous substitutions of Al⁺⁺⁺ for Si⁺⁺⁺⁺, and also Mg **, Fc **, and Fe *** for Al *** to form the several groups of elay minerals,

Kaolinite Group. The recognized minerals of this group arc: kaolinite, dickite, naerite, halloysite-hydrated halloysite, and anauxite. They are referred to as the 1:1 lattice type for they are made up of layers containing one silica and one gibbsite sheet. The sheets arc joined by sharing oxygens wherever necessary to satisfy valence charges. Layers are held together by van der Waals forces, which are not direct valence bonds. These forces are weak and are responsible for the dominant platy character of the crystals. As can be determined from the schematic sketch of the kaolinite molecule (figure 2) the formula is $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$ or, structurally, $(OH)_4$ $Al_2(Si_2O_5)$. It is probable that very little or no isomorphous substitution occurs,

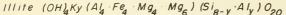
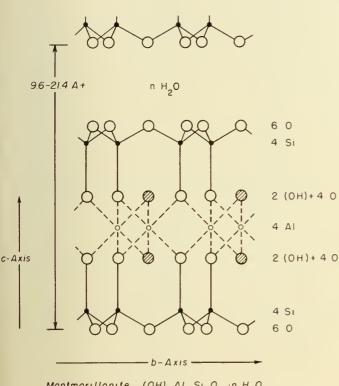
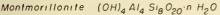


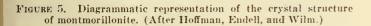
FIGURE 4. Diagrammatic representation of the crystal structure of illite. (After Grim, 1942.)

A differential thermal analysis of a typical kaolinite is shown in figure 3. The endothermic peak at approximately 600° C. or 1112° F. results from driving off water from the structure. Two theories exist for the appearance of the sharp exothermic peak at 980° C. or 1796° F. One states that it is due to the crystallization of gamma-alumina and the other, to the microcrystallization of mullite $(3\Lambda l_2 O_3 \cdot 2SiO_2)$. Nevertheless, this peak, with the endothermic one, are identifying characteristics of kaolinite.

Dickite and naerite are similar to kaolinite in all respects except in the degree of orientation of the layers over one another.⁸ The curve for dickite (figure 3) has its endothermic peak at a higher temperature than kaolinite; and naerite,⁹ for which a curve is not available, presumably would show a still higher endothermic peak because of the less random packing of layers.

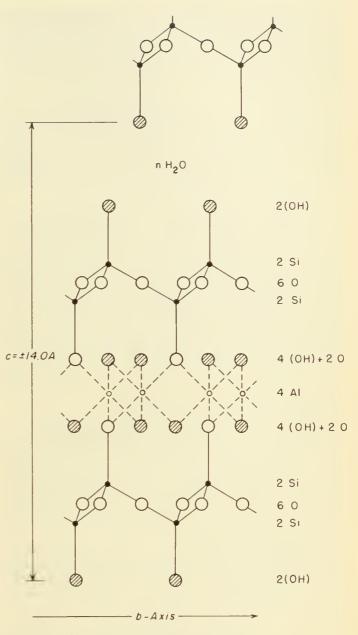

Halloysite has the formula Al₂O₃·2SiO₂·2H₂O and hydrated halloysite Al₂O₃·2SiO₂·4H₂O.¹⁰ The latter is formed by the addition of oriented layers of water between the kaolinite layers. A series exists between the two forms. The chief differentiating characteristics of the halloysite differential thermal eurve (figure 3) are the appearance of a large endothermic peak at approximately 150° C. or 302° F. due to the vaporization of the interlayer water (the size of the peak depends upon the amount of inter-layer water) and a sharp return to the neutral temperature after the main endothermic peak at 600° C., in contrast with a symmetrical endothermic peak as exhibited by kaolinite. The particles of halloysite are rodshaped, formed by the curling of thin plates.


Anauxite is formed by the addition of oriented silica layers between the kaolinite layers—the formula being $Al_2O_3 \cdot 3SiO_2 \cdot 2H_2O^{11}$ A series can thus exist between kaolinite and anauxite. The nature of the differential thermal analysis is, as yet, not certain. Several analyses of samples considered to be anauxite produced curves similar to those for kaolinite but with smaller heat effects. Work is in progress to settle this point.


Illite or Hydrated Mica Group. Sufficient work has not been done on this group to classify its members under specific mineral names. It is referred to as the 2:1 lattice type, for it is made up of layers containing a gibbsite sheet sandwiched between silica sheets. These are joined by the sharing of oxygens between alumina and silica sheets wherever necessary to satisfy valence charges leaving only a few excess charges at the sheet interfaces that have to be satisfied with (OH)-ions. The schematic sketch (figure 4) shows this arrangement.

It is essential for the constitution of this group to have isomorphous substitutions of Al+++ for Si++++ in the silica sheets. The resultant loss of the positive charge, and thus unbalance, is made up by the introduction of K⁺ ions between the layers. In addition, isomorphous sub-, stitutions of Mg ++, Fe ++, and Fe +++ can easily occur for Al⁺⁺⁺ in the gibbsite sheet. A series of illites is formed

⁸ Hendricks, S. B., On the crystal structure of the clay minerals: dickite, halloysite and hydrated halloysite: Jour. Mineralog. Soc. America, vol. 23, pp. 295-301, 1938.
⁹ Hendricks, S. B., The crystal structure of nacrite Al₂O₃·2SiO₂·2H₂O and the polymorphism of the kaolin minerals: Zeitschr. Krystallographie, band 100, pp. 509-518, 1939.
¹⁰ Hendricks, S. B., Crystal structure of clay minerals, op. cit.
¹¹ Hendricks, S. B., Crystal structure of clay minerals, op. cit.
¹¹ Hendricks, S. B., Concerning the crystal structure of kaolinite Al₂O₃·2SiO₂·2H₂O and the composition of anauxite: Zeitschr. Krystallographie, band 95, p. 247, 1936.



as Al*** is substituted for Si**** up to a maximum of 15 percent of the silicon ions. If 25 percent of the positions are replaced, mica results, showing the close relationship of the group to miea. The resultant formulae beeome :

Illite— $K_2O \cdot 5Al_2O_3 \cdot 14SiO_2 \cdot 4H_2O$ or $(OH)_4 K_v (Al_4, Fe_4, Mg_6) (Si_{8-v} \cdot Al_v) O_{20}.$ $Miea - K_2O \cdot 3Al_2O_3 \cdot 6SiO_2 \cdot 2H_2O \text{ or }$ $(OH)_4K_2(Al_4, Fe_4, Mg_6)$ $(Si_6 \cdot Al_2)$ O_{20} .

Differential thermal analyses of illites (figure 3) show the presence of three peaks: two similar to those for kaolinite but smaller and less sharp, and another small endothermie peak at about 800° C. or 1472° F. The smaller, broader peaks are due to a comparatively slow rate of breakdown of the structure.

Montmorillonite Group. This group is also referred to as the 2:1 lattice type consisting of a gibbsite sheet sandwiehed between siliea sheets.¹² The isomorphous substitutions recognized in montmorillonites are Mg **, Fe **, and Fe *** for Al *** in the gibbsite sheets. The generally accepted structure suggested by Hoffman, Endell, and Wilm ¹² is shown in figure 5; figure 6 pietures the strueture proposed by Edelman and Favejee,¹³ which is favored by some workers.

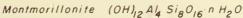


FIGURE 6. Diagrammatic representation of the crystal structure of montmorillonite. (After Edelman and Favejee.)

The group can be represented by a composition triangle with apexes of the oxides of the middle sheet (Al_2O_3 , MgO, Fe_2O_3). The pure end members then are:

Pyrophyllite- $Al_2O_3 \cdot 4SiO_2 \cdot H_2O$ or $(OII)_4Al_4(Si_2O_5)_4$ Tale-Saponite- $3MgO \cdot 4SiO_2 \cdot H_2O$ or $(OH)_4Mg_6(Si_2O_5)_4$ Nontronite- $Fe_2O_3 \cdot 4SiO_2 \cdot H_2O$ or $(OH)_4Fe_4(Si_2O_5)_4$

The end members themselves do not exhibit such properties as high base exchange, plasticity, and expanding lattice, that are characteristics of this group. The typical montmorillonitic clays, such as bentonite, occur within this composition triangle close to the Al_2O_3 apex and the

¹² Hoffman, U., Endell, K., and Wilm, D., Crystal structure and swelling of montmorillonite: Zeitschr. Kristallographie, band 86, pp. 340-348, 1933.
¹³ Edelman, C. H. and Favejee, J. Ch. L., On the crystal structure of montmorillonite and halloysite: Zeitschr. Kristallographie, band 102, pp. 417-431, 1940.

Al₂O₃-MgO side. The expanding lattice is associated with the presence of additional water between the layers which is driven off completely at drying temperatures of about 200° C. or 392° F. The structural formula for the typical montmorillonite becomes: (OH)₄(Al₄, Fe₆, Mg₆) (Si₂O₅)₄. nH_2O .

The differential thermal analysis shown (figure 3) is representative of a typical montmorillonite. The reactions generally occur more rapidly than in the illite group, resulting in three sharper, more distinct peaks, and the first endothermic peak is at a higher temperature (about 700° C. or 1292° F.). Changes in relative size and slight shifts in position of all three peaks occur with changes in composition, but the exact pattern is not known.

Miscellancous Clay Minerals. Attapulgite and beidellite are the best known of the elay minerals that do not fall into one of the three main groups. The structure of attapulgite, as worked out by Bradley,¹⁴ is similar to the 2:1 lattice type except that the siliea sheets are arranged so that the silieon ions occur in strips alternately on either side of the oxygens, and the gibbsite sheet occurs in corresponding strips, producing a fibrous structure. Substitutions of Mg ** for Al *** occur extensively, the magnesium end member being (OH)₂Mg₅Si₈O₂₀·8H₂O.

Beidellite is often included in the montmorillonite group because of its close similarity. However, as it does not exactly follow the structural pattern of the montmorillonites, it should be listed separately.

Marshall ¹⁵ suggests that the mineral is formed by substitutions of Al +++ for Si ++++ in the silica sheets of the montmorillonite structure. The extra charges are, however, not balanced by introduction of K⁺ ions between the layers as in illite but by introduction of additional positive charges in the gibbsite sheet by simply adding Mg + + ions or replacing an Al + + + ion by two Mg + + ions. This is possible because not all of the available cation positions in the gibbsite sheet are filled.

Pask¹⁶ suggests that the mineral is formed by an interlayer mixing of the montmorillonite and kaolinite-type layers. Such a structure pattern can account for all beidellites giving a series or partial series between kaolinite and montmorillonite.

Variations in Kaolinite Group

The classifications of the main clay groups, as outlined, are based on representative specimens from type areas. During the present studies it became apparent that less of the type mineral kaolinite was present than other members of the kaolinite group. Practically all the Buena Vista area clays examined with the differential thermal analyzer, however, gave kaolinitic-type eurves-an endothermie peak at about 500-600° C. or 932-1112° F. and an exothermic peak at about 880-980° C. or 1616-1796° F.-with variations in intensity and shape of the peaks, particularly of the exothermic. Future mineralogical studies will probably show that the variations are due to interlayer mixtures.

 ¹⁴ Bradley, W. F., The structural scheme of attapulgite: Am. Mineral-ogist, vol. 28, p. 1, 1943.
 ¹⁵ Marshall, C. E., Soil science and mineralogy: Soil Sci. Soc. America Jour, vol. 1, pp. 23-31, 1937.
 ¹⁰ Pask, J. A. and Davies, Ben, Thermal analysis of clay minerals and acid extraction of alumina from clays: U. S. Bur. Mines Rept. Inv. 3737, 28 pp., 1943.

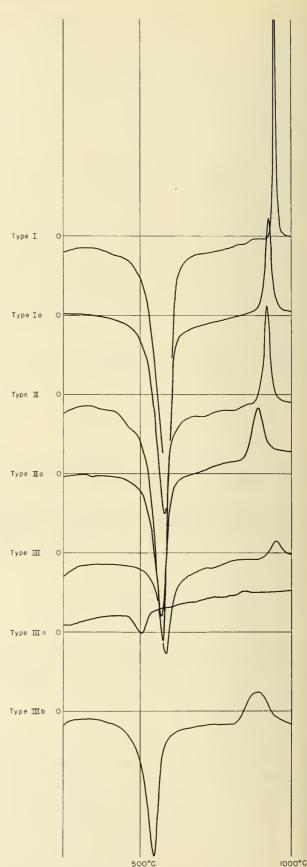


FIGURE 7. Differential thermal analyses of kaolinitic-type minerals from the Buena Vista area.

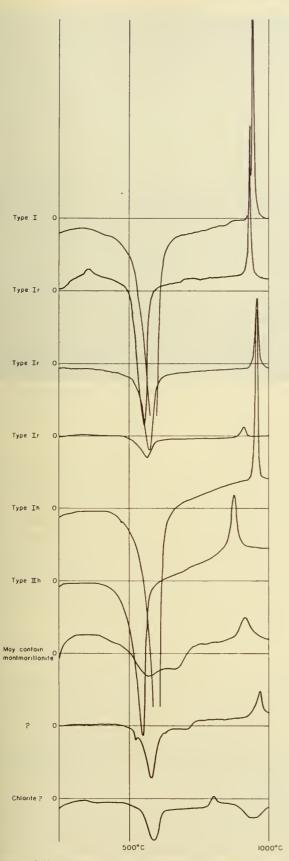


FIGURE 8. Differential thermal analyses of kaolinite having increasing quartz content, and differential thermal analyses of nonkaolinitic minerals from the Buena Vista area.

Because classification desirable for purposes of the study was based on the shape of the peaks of the differential thermal curves, the following types were differentiated (fig. 7):

Type I. Typical kaolinite, A sharp and narrow exothermic peak equal to, or greater in size than, the endothermic.

- Type Ia. Between Land II.
- II. A sharp and narrow exothermic peak one-half or less in Type size than the endothermic.
- Type IIa. Between II and III.
- Type III. Exothermic peak small, broad, and rounded; endothermic peak smaller than that for I and II.
- Type IIIa. Exothermic peak very small or non-existent,
- Type IIIb. Similar to III; exothermic peak larger in area, and more rounded; both peaks at a slightly lower temperature.

A snb-type of any of these, identified by the letter "h" (as: Type Ih), has a tendency toward a halloysite-type endothermie peak. A sub-type identified by the letter "r" (as: Type Ir) has the heights of the peaks reduced by presence of quartz or other relatively inert minerals. Types I, II, and III were differentiated early in the work but many samples were found that had intermediate characteristics that were responsible for establishment of Types Ia, Ha, HIa, and Illb. There are still some samples that are obviously intermediate in structure and are listed, for instance, as I (tending toward Ia). Indications thus exist of a continuous series between Types I, and II, and H and III.

As indicated, dilution of the quantity of clay mineral by quartz and other relatively inert minerals eauses only a diminution of both peaks. Figure 8 shows a selection of Type I enryes with decreasing peak sizes. The presence of quartz was determined when desired by rerunning the curve after the sample cooled below the β - α quartz inversion temperature of 573° C, or 1063° F. This procedure is necessary because the quartz peak is normally masked by the endothermie peak of the kaolinitie clay minerals, which is not reversible.

Carbonaceous material in small amounts does not affect the clay mineral peaks but eauses the superposition of a broad exothermie peak due to oxidation of the organie material. The size and position of the peak varies with the amount and nature of the carbonaecons material.

Several additional types of curves were encountered as shown in figure 8. The minerals responsible for the differenees have not been identified definitely and the eurves were used only for geologic correlation.

DESCRIPTIVE GEOLOGY

Earlier Work. Because the Buena Vista area was an early source of minerals, it has been studied by several geologists. Mason 17 gave a general geological account, including a stratigraphie section of Buena Vista Peak. The mommental geologieal survey of the Sierra Nevada, published in the folio series of the U.S. Geological Survey, contained the first modern geologic study of the area. The Buena Vista area was included in the Jackson quadrangle mapped by Turner.¹⁸ He considered the rhyolitie clay rock to be in the Ione formation. Lindgren 19 showed that the

¹⁷ Mason, J. D., op. cit., pp. 125-136.
¹⁸ Turner, H. W., U. S. Geol. Survey Geol. Atlas, Jackson folio (no. 11), 1894.
¹⁹ Lindgren, Waldemar, The Tertiary gravels of the Slerra Nevada of California: U. S. Geol. Survey Prof. Paper 73, pp. 21-28, 196-197,

^{1911.}

FIGURE 9. Buena Vista area from the top of Buena Vista Peak, Jackson Valley in center. Camera facing north-northwest.

early Tertiary rivers were the source of the sediments deposited in Ione time and delineated their courses. Dickerson,²⁰ Clark,²¹ and Clark and Vokes ²² determined the age of the Ione formation during studies of the Eocene of California.

An overall study of the Ione formation was made by Allen²³ who paid particular attention to the Amador County area. The Ione formation was restricted to exclude all of the rhyolitic sediments, which had previously been included as the upper part of the Ione, and to include sediments of a specific lithologic character. Stearnes²⁴ published a geologic map covering the Buena Vista area that was essentially adapted from the Jackson folio.²⁵ Piper ²⁶ remapped the entire Ione area on a larger seale, using the restricted Ione, set up by Allen, and introduced the Valley Springs and Mehrten formations. The bedrock series, since it was mapped in the 1890's, received little attention until Taliaferro defined the Amador group and its component formations.²⁷

Bates ²⁸ made a detailed study of the commercial clays

- ²⁹ Dickerson, R. E., Fauna of the Eocene at Marysville Buttes, Cali-fornia : California Univ. Dept. Geol. Sci., Bull., vol. 7, pp. 257-298,
- 1913. Dickerson, R. E., Stratigraphy and fauna of the Tejon Eocene of California: California Univ., Dept. Geol. Sci., Bull., vol. 9, pp.

- Dickerson, R. E., Stratigraphy and fauna of the Tejon Eocene of California: California Univ., Dept. Geol. Sci., Bull., vol. 9, pp. 387-417, 1916.
 ²¹ Clark, B. L., The stratigraphy and faunal relationships of the Meganos group middle Eocene of California: Jour. Geology, vol. 29, pp. 161-165, 1921.
 ²² Clark, B. L., and Vokes, H. E., Summary of the marine Eocene sequence of western North America: Geol. Soc. America Bull. vol. 47, pp. 851-878, 1936.
 ²³ Allen, V. T., The Ione formation of California: California Univ., Dept. Geol. Sci., Bull., vol. 18, pp. 347-448, 1929.
 ²⁴ Stearnes, H. T., Robinson, T. W., and Taylor, G. H., Geology and water resources of the Mokelumne area, California: U. S. Geol. Survey Water-Supply Paper 619, 402 pp., 1930.
 ²⁵ Turner, H. W., op. cit.
 ²⁶ Piper, A. M., op. cit.
 ²⁷ Taliaferro, N. L., Manganese deposits of the Sierra Nevada, their genesis and metamorphism: California Div. Mines Bull. 125, pp. 280-286, 306-307, 1943.
 ²⁸ Bates, T. F., Origin of the Edwin clay, Ione, California: Geol. Soc. America Bull., vol. 56, pp. 1-38, 1945.

of the loue area, including some of the clays discussed in this paper.

General Geology. The oldest rocks in the area, the bedrock series, consist of the Upper Jurassic Amador group and Mariposa slates. They are folded metamorphic rocks that are more resistant to erosion than the later sediments of the area.

No Cretaeeous rocks crop out in the area, although they have been encountered during drilling of wells in the Great Valley and at the surface at Folsom, 27 miles north.

Lying on the bedrock in the Buena Vista Basin are gray and green shale and sand of probable Eocene age. They are nowhere exposed at the surface but were penetrated in several of the drill holes. The Ione formation, probably of Eoeene age, overlies these earlier Eocene (?) sediments, and is divided into the lower Ione and upper Ione members. The lower Ione clay and sand beds are exposed throughout most of the area north of Jaekson Valley; the best exposures of upper Ione are on the lower slopes of Buena Vista Peak. The Valley Springs formation, possibly of Miocene age, was laid down on the eroded surface of the Ione formation and is eharacterized by unmetamorphosed rhyolitie debris. It forms the highest part of Buena Vista Peak and eovers the region to the west of the bedrock ridge. No evidence of the Mehrten formation was found in the Buena Vista area although it rests on the Valley Springs formation in surrounding regions.

Quaternary terrace gravel and sand from various sources were deposited throughout the area, covering the tops of many of the higher hills. Jackson Valley, and all of the small valleys that drain into it, are blanketed with Recent alluvium. The gradients of most of the streams are low and the alluvium reaches the heads of the valleys in many places.

	Age	Group and formation	Thickness in feet	General ebaracter
INARY	Recent	Alluvium (Qal)	0- 50 ±	Silt, sand, and gravel in present stream beds and beneath flood plains. Includes alluvial fan material.
QUATERNARY	Pleistocene	Unconformity Terrace Gravels (Qt) Unconformity	0- 18	Auriferous sand, gravel, and water-worn cobbles on remnants of stream ter- races at elevations of from 250 feet to 400 feet.
	Miocene (?)	Valley Springs formation (Tvs)	0- 458	Rhyolite tuff, weathered rhyolite tuff ("clay rock"), and rhyolite-bearing sands and conglomerates.
RY	Middle (?) Eocene		0- 225 ±	White to brown sands and sandy clays. White to gray hard sandstone at top of member, includes the Chitwood elay.
TERTIARY		Very Construction of the member of the membe	0- 415 ±	White, gray, tan, brown, and red clay, lignite, elayey sands, and reworked laterite. Upper lentil includes the Ione sand and Cheney Hill elay. Middle lentil includes three lignite beds. Lower lentil includes Edwin elay.
TERTIARY (?)	Eocene (?)	Unnamed pre-lone beds	0- 131+	Gray, green, and greenish white sands and clays (not exposed at surface).
JURASSIC	Upper Jurassie	Mariposa formation (Jm)	?	Buff to pink clay derived by weathering from black slate (not exposed at surface).
JURA		Amador Logtown Ridge Group formation (Jlr)	?	Greenstone (augite andesite flows and agglomerates with associated intru- sives), weathered to laterite in many places.

Table 1. Summary of rock formations in the Buena Vista area.

The Tertiary formations have not been folded or faulted since deposition, but the whole area was tilted toward the southwest as a unit during the Tertiary and Quaternary periods when the Sierra Nevada was being elevated.²⁹ The Tertiary sediments, however, were deposited with initial dips. The lower lone member, which was laid down in a wide shallow valley, the Buena Vista Basin, conformed to the slope of the sides of the basin and has since been little disturbed. The long axis of the valley seems to be parallel to the strike of the underlying bedrock, about N. 30° W., and a ridge of greenstone may be traced

²⁹ Lindgren, op. cit., pp. 46-48, Matthes, F. E., Geologic history of the Yosemite Valley; 1^{*}, S. Geol, Survey Prof. Paper 160, pp. 43-44, 1930.

FIGURE 10. Greenstone ridge south of Jackson Valley, Greenstone cropping out as rounded houlders in grassy meadow, Buena Vista Peaks in background, Camera bearing east-sontheast,

along the west side of the basin and for many miles north and south. By upper Ione time the basin was essentially full and the sediments and volcanic rocks have a general dip away from the crest of the Sierra Nevada.

Bedrock Series

The bedrock formations in the area are the Upper Jurassie Logtown Ridge and associated feldspar porphyry intrusives of the Amador group, commonly called greenstone, and the Upper Jurassic Mariposa slate.

Amador Group

Amador metavoleanic rocks and Mariposa slate underlie the entire area, but only the Amador group has been exposed by erosion. Greenstone crops ont as rough, rocky hills in the extreme northwest corner of the mapped area and in a small area a third of a mile sonthwest of the Chitwood pit. Several of the drill-holes reached greenstone, as indicated on the cross-sections. Taliaferro³⁰ found that the Logtown Ridge formation was originally composed of angite andesite tuffs, agglomerates, and flows that have since been metamorphosed to amphibolite and chlorite schists.

Three differential thermal analyses were run on the greenstone; two were weathered samples from the bottoms of holes 7-1 and 24-4, and the third was an unweathered surface sample collected on the greenstone ridge just ontside the boundaries of the area. Each of the curves was very irregular but showed peaks characteristic of chlorite. Only in the highly weathered greenstone from hole 7-1

¹⁰ Taliaferro, N. L., op. cit., pp. 283-281.

FIGURE 11. South end of mair greenstone outcrop area north of Jackson Valley. Camera bearing east-northeast.

were there incipient peaks of the type characteristic of kaolinite.

In adjacent areas where the base of the Logtown Ridge formation is exposed, it rests on the Cosumnes formation of the Amador group. The Amador group rests with profound angular unconformity on the highly metamorphosed Calaveras rocks of Paleozoic age. There is no direct evidence that the Cosumnes formation and Paleozoie rocks underlie the Buena Vista area but it is probable that they do. Upward, the Amador group grades into the Mariposa slates.

Taliaferro³¹ says that "the exact age of the Amador is not known, but it is believed to extend from the upper Middle to the lower Upper Jurassic. . . . the best available evidence indicates that the Mariposa is Oxfordian and, possibly, lower Kimmeridgian."

Climate, rate of erosion, or both, changed at the beginning of Ione time in such a way that intense tropical weathering caused the formation of laterite on exposed stable greenstone surfaces. Krumbein and Sloss³² described the process of laterization as "the normal, soil forming process in the tropics. It concentrates iron or aluminum oxides, or both, in the B-horizon (zone of reprecipitation below leached zone), at the expense of the silica, which is leached out. Chemical weathering is rapid. Kaolinitic clay minerals are normal end products in some circumstances but, in others, the elay minerals are not stable. Where clay breakdown occurs, silica is removed, and the aluminum remains behind as a hydrate. Soil formed by the process is laterite.'

The weathering of the laterite is not known to have progressed to the point of producing bauxitic material anywhere in the Buena Vista area nor was highly pisolitic laterite, such as that found near Jones Butte,³³ found in the area. Most of the laterite on the surface and in the drill-hole cores is mottled smooth clay which is not especially plastic. It is colored from nearly solid red to combinations of red, yellow, purple, grav, buff, and white

The only outcrops of laterite are along the sides and on top of the greenstone ridge, both north and south of Jackson Creek. It is well exposed south of the Woolford pit and around hole 24-5, where 63 feet of lateritic material was drilled through. Nearly all the drill holes on the sides of the greenstone ridge passed through at least some laterite before encountering maltered bedrock. In most places, however, the presence of sand grains and water-worn pebbles suggests strongly that much of the laterite has been reworked or transported a short distance and has become part of the lower lone beds. For example, hole 24-3 was drilled through lateritie material from 144 feet to 220 feet, where greenstone was encountered. The interval from 214 feet to 220 feet contained pebbles of greenstone and quartz indicating that the laterite was transported after its formation. Laterite in a stream bed about 1000 feet south of the Woolford pit is definitely residual, however, because the original texture and strueture of the parent rock are still visible, including phenocrysts and small faults.

Six differential thermal analyses were made of samples of laterite. Four were of definitely residual material and two of material reworked in the lower Ione member. All the curves were Type I, with a suggestion of halloysite in the two sedimentary laterites. The residual laterites were picked to represent a range in the degree of weathering. The least weathered sample was brownish vellow with residual texture quite evident and would more properly be called lithomarge. The production of a Type I curve from each of these samples indicates the very early formation of kaolinite in the process of laterization.

Allen ³⁴ and Bates ³⁵ both believed that the laterite was formed in pre-Ione time. The evidence from the Buena Vista area showing that the laterite was eroded into the lowest beds of the Ione formation and that the Ione formation rests on laterite in many places agrees with this conclusion. The basal lower Ione beds in holes 7-1 and 18-2 are highly colored by iron oxides and the thermal analyses give Type Ia (tending toward Type II) curves which would suggest strongly that laterite was a source of part of the material in the beds. On the other hand, the pre-lone Eocene (?) sediments (which are more fully discussed in a following section) give no suggestion of intense tropical weathering, as they have a higher percentage of fresh feldspar, contain mieas and chlorite, and give Type II and III thermal eurves. Only at its contact with the lone formation in hole 18-1 does there appear to have been weathering of the upper several feet of the pre-Ione Tertiary after deposition. In hole 7-1, where it overlies greenstone, the greenstone is weathered but not in a manner which suggests laterization. Apparently the pre-Ione Eocene (?) sediments were derived from a source where mechanical weathering predominated over chemical weathering. This helps show that the laterite formed after the pre-Ione Eocene (?) was deposited and before the basal lower Ione at Buena Vista was deposited because the formation of laterite does not normally take place where erosion is rapid; on the contrary, the presence of laterite implies a long period of surface stability with little erosion or deposition.

Mariposa Slate

The Mariposa slate is predominantly black slate with lenses of sandstone and conglomerate, and characteristically contains no interbedded volcanics. The Amador group grades upward into the Mariposa slate in most places and

 ³¹ Taliaferro, N. L., op. cit., p. 284.
 ³² Krumbein, W. C., and Sloss, L. L., Stratigraphy and sedimentation, pp. 150-151, San Francisco, W. H. Freeman and Company, 1951. 33 Bates, T. F., op. cit., p. 15.

 ³⁴ Allen, V. T., op. cit., p. 391.
 ³⁵ Bates, T. F., op. cit., p. 27.

the contact marks the end of the Jurassic volcanism. The Mariposa slate in adjacent areas usually occurs intricately folded in synclines. No Mariposa slate crops out in the Buena Vista area but it was found at the bottom of hole 18-3. Although it was weathered to pink to greenishgray clay, the original slaty cleavage is still apparent. The degree of weathering is not that of complete tropical weathering such as the weathering which has altered the Mariposa elsewhere in the Ione area. At Irish Hill, about 3 miles northwest of the town of Ione, for example, the Mariposa slate has been completely weathered to very white clay.

Differential thermal analyses were made on four samples of weathered Mariposa slate from the bottom of hole 18-3, one sample of fresh black Mariposa slate from Chili Bar in El Dorado County, and a sample of white residual clay derived from Mariposa slate at Irish Ilill, near the town of Ione. Although the curve for the fresh slate showed a little carbon and possibly some chlorite, it showed no clay minerals. The Irish Hill clay gave a Type II (tending toward IIa) curve. The curves for the Bnena Vista area samples were intermediate between Types III and IIIa. It is significant that the Irish Hill clay is apparently at the end point for weathering of the type that acted on the pre-Ione surface, and yet gives a poor Type II curve. This suggests that the weathered products of the Mariposa slate did not contribute significantly to the Cheney Hill and Edwin clays of the Ione formation.

Tertiary System

Eocene (?) Pre-Ione Beds

In the lower parts of several of the Buena Vista drill holes, the drilling passed through sediments with lithologic characteristics of the lower Ione member and into sands and shales showing no evidence of intense weathering except near their contact. These beds are distinguished from the lower Ione member by the presence of biotite, chlorite, and clays of Type II1. These beds appear to be present along the northeast side and bottom of the Buena Vista Basin as indicated by holes 7-1, 13-1, 13-2, 18-1, 18-2, and 19-1. In none of the holes were they encountered at a depth of less than 231 feet. Geologic mapping in other parts of the Ione region has not yet revealed ontcrops of any rocks which appear to be part of these beds.

Typical sections of the pre-Ione Eocene (?) were those in hole 7-1 from 231 feet 4 inches to 259 feet 6 inches, in hole 18-1 from 311 feet to 375 feet, and in hole 18-2 from 235 feet to 254 feet. These sections are given in the appendix. The section in hole 7-1 represents the full thickness at that point but the sections in holes 18-1 and 18-2 were not drilled to bedrock, and at the contact with the lower ione member in hole 18-1 the top of the pre-Ione Eocene (?) is not definite.

Silty elay is the predominant rock, with beds of sandy clay, sandy silt, and elay. Conglomerate composes less than 10 percent of the beds. The colors of the sediments are largely grays and greens, but a few yellow, brown, and red beds were present in the weathered section in hole 18-1. Almost the entire section in hole 7-1 is highly carbonaceous but very little carbonaceous matter was seen in any of the other holes. In the center of the basin the sediments all range from green to white, except in the weathered zone. The ratio of feldspar grains to quartz grains is three to four times greater than was found in the lower Ione sand, which would indicate less severe weathering or more rapid crosion of the source rocks than occurred during hone time. Chlorite, biotite, and muscovite were also common detrital minerals in the samples checked.

In spite of the rapid lateral and vertical variation in appearance of the sediments of the pre-Ione Eocene (?) the clay minerals show a remarkable similarity. Thirteen differential thermal analyses were run and all gave kaolinitic curves of Types IIa and III. Of the four curves that were Type IIa, three were approaching Type III. This similarity was not only very useful in correlation but also shows the lack of development of clays of Types I and II and would indicate mild weathering due to climatic conditions or rapid erosion before extensive weathering could take place. The results of one differential thermal analysis suggested the presence of some montmorillonite-type clay in a bed of very dense tough green siltstone in hole 19-1; however, kaolinite was also present and gave a Type III curve.

The 28-foot 2-inch section in hole 7-1 was the only thickness of the pre-lone Eocene (?) sediments that was measurable from its lower contact with bedrock to its upper contact with the Ione formation; however, this section is on the side of the basin and the surface may have been eroded an nnknown amount. The thickest section is apparently in hole 19-1, from the questionable upper contact at a depth of 265 feet (12 feet above sea level) to the point where the drilling was stopped at a depth of 396 feet (119 feet below sea level), a total of 131 feet.

The base of the pre-Ione Eocene (?) sediments rests with a very low dip on weathered greenstone in hole 7-1 but was apparently not reached in any of the other drill holes in the area. It probably rests on greenstone and Mariposa slate everywhere in the deeper parts of the basin unless some older pest-Jurassic formation exists below it.

An unconformity between the pre-lone Eocene (?) sediments and the lower Ione is indicated at several places along the contact. In hole 18-1 the upper 12 feet of the pre-lone Eocene (?) sediments are highly weathered, but in hole 18-2 there is only a very thin weathered zone at the top, and in hole 7-1 there is none. Weathering of this type, suggesting the beginning of laterization, would indicate a period of time with neither deposition nor erosion. Weathering would be either general or else more active on the higher slopes which were more exposed to alternate moisture and relative dryness. The absence of a highly weathered zone in hole 7-1 indicates that there may have been subsequent erosion before the overlap of the Ione sediments. Although the sediments of the pre-Ione Eoeene (?) were not derived from a source undergoing intense laterite-forming weathering, the laterite was present at the beginning of tone deposition. The laterite served as a source of material for the basal beds of the lower Ione, and required an interval between the pre-Ione Eocene (?) and lower lone deposition for development.

The pre-lone Eocene (?) beds cannot be correlated definitely with any other geologic unit on the basis of our present knowledge. However, the lone formation is underlain in many other areas by units which bear a lithologic resemblance to the pre-Ione Eocene (?) beds of the Buena Vista area. Piper ³⁶ states that "wherever the Ione formation crops out in the Mokelumne area it rests directly upon the pre-Cretaceous erystalline rocks. In a few deep wells, however, and in outcrops at several districts in central California it appears to be underlain by gray micaceons shale and sand that constitute a distinct stratigraphic unit."

The nearest point to the Buena Vista area that Piper refers to is the well he calls Well 4712A1 (Allen's Clements well) which went through a sedimentary bed at a depth of 1779 to 1975 feet, just below the Ione. This bed was "chiefly dark gray to brown shale and gray sand, mostly fine, contained many fossils, and included earbonaceous streaks or flakes." 37

Stewart ³⁸ describes the "Dry Creek" sandstone member of the Ione formation at Sutter Buttes as "a silty, micaceous, fine sandstone with plant remains and massive fossils. . . .''

Allen ³⁹ discusses the gray Walkup clays, below the Ione formation at Lincoln, and "the Dry Creek formation" at Oroville Table Mountain, composed of gray shales overlain by biotite sandstone. The age of the Walkup clay,⁴⁰ the Marysville formation,⁴¹ the "Dry Creek" sandstone member of the Ione,⁴² and the grav shale under the Ione in the Clements well 42a have been considered middle Eocene. Paleontologic examination of a suite of samples of pre-Ione sediments by Standard Oil Company of California showed them to be barren of microfauna.42b

No definite correlation between these middle Eocene formations and the pre-Ione Eocene (?) beds of the Buena Vista area can be made as no fossils were found in the latter but we believe that the stratigraphic and lithologic evidence is sufficient to consider the beds tentatively to be Eocene.

Eocene Ione Formation

The Ione was originally named by Lindgren,⁴³ and the type area around the town of Ione, including the Buena Vista area, was described by Turner,⁴⁴ who distinguished three divisions in the formation. From oldest to youngest they were:

1. White clay, some portions sandy, containing lignite. 2. Sandstone, passing into conglomerate in places. Usually white but red in one place.

3. Clay rock.

Allen⁴⁵ restricted the name Ione formation to the beds along the foothills of the Sierra Nevada that have a mineral composition and history similar to the lower two members of the formation at the type locality. The beds are shown as Euc on the geologic map of California.⁴⁶

FIGURE 12. Woolford clay pit. White area in right center is Cheney Hill clay. Overburden is white, buff, and brown saudstone and conglomerate. The pit is now idle.

During the work on the Buena Vista area the geologic mapping, the study of drill cores and thin sections, and the ceramic tests showed that there are two major mappable units, separated by an unconformity and lithologic differences, in the Ione formation as described by Allen. These two units are defined as members. The upper and lower boundaries of the Ione formation remain the same as the boundaries of the Ione formation defined by Allen.

Lower Ione Member. The older of the two units in the Ione formation is characterized by a high proportion of quartz to feldspar, and clay minerals that give differential thermal curves of Types I, Ia, II, and IIa; and by the absence or rarity of biotite, chlorite, and clay minerals that give differential thermal curves of Types III, IIIa, or IIIb.

It is proposed that the name "lower Ione" member be used for the lower unit of the Ione formation.

The lower Ione member crops out over large areas north of Jackson Valley, but continuous sections are not found in most places and whatever sections are measurable usually yield data on relatively short stratigraphic sections only. The most complete and typical sections available are those shown in the drill-hole logs published with this paper. Lateral variation prevents any section from bearing more than resemblance to any other section but holes 18-1 and K-10 are together considered to give the longest and most representative section of the lower Ione. The type section of the lower Ione member was chosen as the intervals from 10 feet to $42\frac{1}{2}$ feet in hole K-10 and from 109 feet to 311 feet in hole 18-1. The lignite at the bottom of hole K-10 is believed to be the same lignite as the one at 109feet in hole 18-1 and the type section therefore represents a thickness of 234 feet of lower Ione sediments.

In the Buena Vista area there are three recognizable units or lentils in the lower Ione. These are a lower lentil which consists predominantly of clayey sand, in many places colored gray by carbonaceous matter but containing only a few very thin partings of lignite; an intermediate lentil which is made up largely of clay and lignite with minor amounts of elayey sand and containing three distinct lignite beds; and an upper lentil of clayey sand and sandy clay locally called the Ione sand and Cheney Hill clay. The commercial lignite from this area is all in the middle lentil; the Fancher, Woolford, and Kaolin-Fye clay and sand pits are in the upper lentil.

³⁶ Piper, A. M., op. cit, p. 85. ³⁷ Ibid.

³⁸ Stewart, Ralph, Lower Tertiary stratigraphy of Mount Diablo, Marysville Buttes, and west border of Lower Central Valley of California: U. S. Geol. Survey Oil and Gas Prelim. Chart 34, (1), 42 10(4). Marysvine Buttes, and west border of Lower Central Valley of California: U. S. Geol. Survey Oil and Gas Prelim. Chart 34, Sheet 2, 1949.
⁴⁰ Allen, V. T., op. cit., pp. 364-368.
⁴¹ Ibid., p. 366.
⁴² Dickerson, R. E., op. cit. 1916, p. 388. Clark, B. L., op. cit. 1921, p. 125. Stewart, Ralph, op cit.
⁴² Allen, V. T., op. cit., pp. 402-403.
⁴²⁶ Hastings, D. D., and Stone, Charity M., personal communication, May 1952.
⁴³ Lindgren, Waldemar, U. S. Geol. Survey Geol. Atlas, Sacramento folio (no. 5), p. 3, 1894.
⁴⁴ Turner, H. W., op. cit.
⁴⁵ Allen, V. T., op. cit., pp. 353-354.
⁴⁶ Jenkins, O. P., Geologic map of California: California Div. Mines, scale 1:500,000, 1938.

FIGURE 13. Fancher clay pit. Cheney Hill clay largely hidden by caving. Overburden is brown sandstone of the upper Ione member and Quaternary terrace gravels. Camera bearing northeast.

The mineral assemblage of the lower lone member is characterized by the absence or rarity of minerals such as biotite, plagioclase, and chlorite that do not persist through intense weathering. There are some nuscovite flakes in the lower part of the lower member, however. The three clay types in the lower lone of the Bnena Vista area that have been given names by the local miners are the Edwin clay, Cheney Hill clay, and Ione sand. The Ione sand is a quartz sand with 25 to 80 percent kaolinite and anauxite. The color of the lone sand ranges from white through brown to red because of iron oxide stains. It crops ont in the eastern part of the area and is reported from wells in the central part of the area.47 Farther west, away from the source of the sediments, is the sandy Cheney Hill clay. The Cheney Hill clay and the lone sand are apparently in the same stratigraphic position and all gradations are found between the lone sand of the Kaolin-Fye pit and the Cheney Hill clay of the Fancher pit. The Cheney Hill clay seems to represent a finer-grained phase of the Ione sand farther from the source of sediment supply. Bates 48 points ont the similarities between the Edwin and Cheney Hill clays and considers the Edwin a nearly sand-free variety of the Cheney Hill clay. Our work did not bear this out but instead showed the Edwin elay of this area to be in the lower lentil and the Cheney Hill clay to be in the apper leutil of the lower lone member.

Allen⁴⁹ showed that the large pearly flakes of clay mineral, which are almost restricted in California to the Ione formation or its equivalent, are anauxite. Anauxite is present throughout the lower and upper lone but is especially common in the lone sand in which it comprises a large proportion of the clay fraction.

Several beds in the lower lone are colored by iron oxides. Some of the iron was apparently derived from laterite eroded from the greenstone ridge or from greenstone and similar rocks in the higher Sierra Nevada. All along the flanks of the greenstone ridge large quantities of lateritic material have been reworked into the base of the lower Ione, and in many places it is distinguishable from laterite still in place only by the sedimentary sand grains or pebbles in some beds or by non-lateritic beds lower in the section.

A different type of iron-oxide coloring is found at the upper surface of the lower lone where clays and sands crop out or are overlain by terrace gravels. Commonly at these places there are heavy concentrations of iron oxides as coloring material and as concretions.

A large number of differential thermal analyses were made on samples from all parts of the lower lone. These showed the differences between the lower lone and other formations of the area, and the less distinct but nevertheless significant differences between the three lentils of the member.

The lower lone clay minerals consistently gave Type I and Type II curves and variants of these curves. Only one sample, from near the base of the formation, gave a Type III curve. Clays which gave a Type 1 curve were common, especially the Edwin and Cheney Hill clays which almost invariably gave Type 1 curves.

Allen⁵⁰ believed that the physical and chemical properties of the Edwin Clay suggested the presence of the clay mineral halloysite. Bates,⁵¹ after detailed study, concluded that the Edwin clay was kaolinite. Differential thermal analyses on several samples of Edwin and Cheney Hill clays from the Bnena Vista area showed kaolinite with a tendency toward halloysite.

In the lower Ione the clays are usually Type I on the southwest side of the basin and are, by comparison, a mixture of Types 1 and 11 on the northeast side. In several individual beds which were traced through a number of holes the differential thermal analyses approached Type I in the higher parts of the basin and Type 11a in the center of the basin. Similarly, there is a greater thickness of solid, pure lignite toward the margins of the basin than in the center. Clays close beneath lignite generally gave differential thermal analyses approaching Type I more closely than did clays farther below lignite. This apparent relation between lignite and clays approaching Type I suggests that the clays were altered by organic solutions from the overlying lignite after deposition. Evidence in-

⁴⁷ Fancher, Jack, personal communication, 1951.

⁴⁸ Bates, T. F., op. cit., pp. 25-26, ⁴⁹ Allen, V. T., op. cit., pp. 377-378.

 ⁵⁰ Allen, V. T., op. cit., pp. 380-382.
 ⁵¹ Bates, T. F., op. cit., p. 17.

dieates this alteration of lower Ionc sediments was an important factor in producing the present assemblage of clay minerals.

The lower Ione member underlies most of the Buena Vista area except along the erest of the greenstone ridge. It crops out along the flanks of the greenstone ridge and on the north side of Jackson Valley east of the Fancher clay pit. The main outcrop area to the north is entirely in the upper lentil of the lower Ione.

No definite lower Ione beds were found around the base of Buena Vista Peak and the drill-holes there do not seem to have reached it. The Buena Vista coal mine, at an elevation of about 300 feet on the south edge of Jackson Valley, duc south of Buena Vista, is reported ⁵² to have reached gray clay at a vertical depth of 50 feet and lignite at 594 feet. The gray clay is probably lower Ione and the lignite is certainly lower Ione.

The thickest single section of the lower Ione is in hole 13-2 with an interval of 285 feet between the upper lignite and the apparent contact with the pre-Ione Eccene (?) beds. The upper lentil, which is not represented in hole 13-2, is in places about 130 fect thick, although the measurement of the section is an estimate because of lack of topographic control in some of the area. This would give a total maximmm thickness of 415 fect. The thickness of the type section is 234 feet. There is a range of thickness due to thinning along the margins of the basin and to removal of portions of the upper lentil by erosion.

The sediments of the Ione formation have been shown by Lindgren⁵³ to have originated from the basement rocks of the Sierra Nevada. He was the first to show that the pre-volcanic gravel channels represented the beds of the rivers that had emptied into the Ione sea and pointed out the continuity of the auriferous gravels with the Ionc sands and clays. Lindgren ⁵⁴ traced the major Tertiary pre-volcanic rivers and found that the Tertiary Mokelumne River mouth was about 12 miles north of Buena Vista and the Tertiary Calaveras River mouth was 9 miles to the south. These two large rivers plus many streams, emptying into the sea at intermediate points, probably furnished the Ione sediments now found in the Buena Vista area. One such small stream formed a gravel delta about 3 miles north of the area. Jenkins ⁵⁵ has illustrated the relationship between the auriferous gravels and the Ione formation. Bates ⁵⁶ studied quartz grain inclusions in the Cheney Hill and Edwin clays and felt that a large proportion of the quartz grains were from the granitie rocks of the Sierra Nevada.

The lower Ione member rests with an apparent unconformity on the pre-Ione Eoccne (?) beds, as noted in the previous section, and underlies the upper lone member with a definite unconformity. At the Fancher pit coarse brown upper Ione sand with abundant biotite grains unconformably overlies the Cheney Hill clay. The contact is irregular and dips to the south. In several places in the area, such as in the drill holes west of the greenstone ridge, southeast of the Woolford pit, and at the Fancher pit, upper Ione sediments occur in positions that are topographically lower than adjacent or nearby lower Ione beds. The relationship is such as to indicate that the upper Ione beds were deposited on an irregular erosion surface formed on the lower Ione beds.

No direct evidence of the geologie age of the lower Ione was found in the Buena Vista area but the formation can be correlated with Ione exposures in other regions where age determinations are possible.

The mineral analyses given by Allen⁵⁷ for Ione formation samples from various points along the east side of the Great Valley indicate that lower Ione lithology is found from Butte County to Madera County. Mineral analyses ⁵⁸ of the Ione formation at Chalk Bluffs, Nevada County indicate that the beds considered by MacGinitie as Ione are probably the lower Ione member. They are overlain unconformably by pre-volcanic sediments with biotite and a high percentage of feldspar which are probably the upper Ione member.

Stewart ⁵⁹ considers a formation above the Meganos at Rio Vista and north of Mount Diablo to be questionable Ione.

The Ione formation sediments are largely deltaie or lagoonal and fossils are rare. In the few localities where marine fossils occur, the material is poorly preserved and identifiable specimens are scarce. Fossils from the Ione formation at the Buena Vista stone quarry, about 3 miles southeast of Buena Vista, have been identified by Clark 60 as Meganos (middle Eocene) types. Stewart ⁶¹ considers the Meganos as lower Eocene, however, and places the Ione above it in the middle Eocene. MacGinitie,⁶² on the basis of work on the fossil flora of the Lower Ione at Chalk Bluffs, correlates the lower Ione with the Capay of the Coast Ranges.

Upper Ione Member. The younger of the two units in the Ione formation is characterized by a generally higher proportion of feldspar to guartz than in the lower Ione and by the presence of biotite, chlorite, and kaolinitic clay minerals that give differential thermal curves of Types II, IIa, III, and IIIb; and by the absence of kaolinitic clay which would give the differential thermal curve of Type I. It is proposed that the name "upper Ione" member be used for the upper unit of the Ione formation.

North of Jackson Creek, the upper Ione member crops out below the terrace gravels on the lower hills west of Buena Vista. The lower slopes of Buena Vista Peak are also composed of upper Ione sediments. Upper Ione was intersected in several of the drill holes along the greenstone ridge. The thickest section of definitely upper Ione beds is on the north slope of Bnena Vista Peak but it is so sandy and unconsolidated that surface exposures are rare. Chosen as a type section of the upper Ione, is the section through which hole B. V. 5 was drilled, and extending above the hole to the base of the Valley Springs formation. The vertical distance from the base of the Valley Springs formation at an elevation of about 475 feet, to the bottom of hole B. V. 5 at an elevation of about 312 feet, represents approximately 163 feet of upper Ione

⁵² Logan, C. A., Sacramento field division—Amador County : California

⁵² Lögan, C. A., Sacramento held division—Anador County : California Min. Bur. Rept. 23, p. 146, 1927.
⁵⁴ Lindgren, Waldemar, Tertiary gravels, op. cit., p. 24.
⁵⁵ Jenkins, O. P., Geology of placer deposits: California Div. Mines Bull. 135, 2nd ed., fig. 64, p. 176, 1950.
⁵⁶ Bates, T. F., op. cit., pp. 28-30.

⁵⁷ Allen, V. T., op. cit., p. 375.
⁵⁸ MacGinitie, H. D., A middle Eocene flora from the central Sierra Nevada: Carnegie Inst. Washington Pub. 534, pp. 13-23, 1941.
⁵⁹ Stewart, Ralph, op. cit.
⁶⁰ Clark, B. L., personal communication in Allen, V. T., op. cit., p. 358.
⁶¹ Stewart, Ralph, op. cit.
⁶² MacGinitie, H. D., op. cit., pp. 28 and 91.

FIGURE 14. Kaolin-Fye sand pit. White Ione sand with overburden of buff Ione sand and Quaternary terrace gravel. Camera bearing north-northwest.

sediments. The hole, however, does not reach the base of the upper Ione member. The upper Ione, below the bottom of hole B. V. 5 has poor surface exposure, and other holes in the vicinity do not give additional information, so these Iower beds are not included in the type section.

The upper Ione member is predominantly sand and clayey sand, with a little clay and minor amounts of eonglomerate. No lignite is present but some of the clays contain enough carbonaceous material to be chocolate colored. The clays persistently have a greenish color that is rare in the lower Ione.

Biotite was almost universally present in the samples checked, and chlorite was common. Feldspar comprised from 20 to 25 percent of the sand grains and is, therefore, two to three times as abundant as in the lower Ione.

Two lentils in the upper Ione member are persistent over most of the area. One is the hard white or gray sandstone at the top of the formation. This sandstone was referred to by II. W. Turner ⁶³ as the middle member of the Ione formation and by Piper ⁶⁴ as the upper member of the

⁶³ Turner, H. W., op. cit. ⁶⁴ Piper, A. M., op. cit., p. 80.

FIGURE 15. Wax-extraction plant for the removal of Montan wax from lignite, operated by American Lignite Products Company, Type section of the upper Ione member is on the hill beyond the plant. Camera bearing south-southwest.

Ione formation. It crops out on the northwest side of Bnena Vista peak, on top of a high hill about 3000 feet east of the Woolford pit, on top of Chitwood Hill, and on a small hill about one-half mile west of Chitwood Hill. The hard sandstone is cross-bedded in places and has a typical npper Ione mineral assemblage except that the elay mineral matrix is largely analytic in wormlike and fanshaped aggregates. The other persistent unit is the Chitwood clay that was mined at the Chitwood pit. It also crops out 500 feet sontheast of the Fancher Pit and in the eanyon on the west side of Bnena Vista Peak. It is about 70

FIGURE 16. Section at Fancher clay pit in caved drift at north end of main face. Cheney Hill elay overlain by brown sandstone of the upper Ione member and Quaternary terrace gravel. The pit is now idle.

percent sand, 30 percent clay, contains no anauxite, and is usually gray in color. The clays and sands between and below these two members are so leuticular that only very tentative correlation could be made between the various drillholes on the north slope of Buena Vista Peak.

A large number of differential thermal analyses were made of samples from various parts of the upper Ione. Differential thermal analyses of upper Ione samples did not approach standard kaolinite closer than Type II (tending toward Ia), and most of the samples gave differential thermal analyses of Types III and IIIb.

A tendency for the differential thermal curves to approach Type I toward the top of the formation was indicated, with the closest approach, Type II curves (tending toward Ia) in the Chitwood clay and the hard sandstone.

This development of the kaolinitic minerals toward kaolinite may be the result of weathering on the upper part of the formation during the interval between the close of the deposition of the upper Ione member and the beginning of the deposition of the Valley Springs formation.

The surface on which the upper Ione member was deposited was irregular, and extensive erosion has taken place since it was deposited. Because of this, the upper Ione member has a large range in thickness throughout the area. In the vicinity of the type section the base of the upper Ione member is not exposed but the shaft of the Buena Vista coal mine, with the collar about 300 feet in elevation, reached lower Ione lignite at a vertical depth of $59\frac{1}{2}$ feet ⁶⁵ and $9\frac{1}{2}$ feet of gray clay above the lignite is probably also in the lower Ione member. The elevation of 250 feet is then the lowest probable elevation for the base of the upper Ione member. The thickness of the upper Ione member in the vicinity of the type section is thus more than 163 feet and less than 225 feet. At Chitwood Hill the upper Ione beds rise 130 feet above the valley floor with no evidence of lower Ione beds at the base. At the high hill 3000 feet east of the Woolford pit, 70 feet of upper Ione sediments rest on lower Ione beds and in the valley to the southwest there are an additional 50 feet of upper Ione sediments.

The source of the upper Ione sediments was probably the crystalline rocks of the Sierra Nevada. The effects of weathering were not as prominent as in the lower Ione member, either because the climate had become less tropical or because erosion was proceeding too rapidly to allow deep weathering. No marine upper Ione beds were recognized in the area, but there is a hard red sandstone containing marine fossils a mile and a half east, which appears to be the same sandstone that is at the top of the upper Ione type section.

The contact between the upper and lower Ionc members is irregular and obviously an unconformity. The maximum differential relief measurable on the erosion surface is about 130 feet in the region east of the Fancher Pit. The upper surface of the upper lone member was also deeply eroded before the deposition of the Valley Springs formation. In the small canyon west of Buena Vista Peak the base of the Valley Springs formation has a difference in elevation of 85 feet over a distance of 400 feet.

Sands with upper Ione lithology have been described in or above the Ione formation at several points on the east side of the Great Valley and in the Sierra Nevada. Allen 66 described outcrops near Valley Springs and at Knights Ferry as follows:

"One mile west of Valley Springs is a small sandstone quarry. The sandstone contains, in addition to anauxite and quartz, altered biotite and more feldspar than is in the usual Ione sandstone. It probably should receive a separate name, as the mineral assemblage is not typical, but the outcrop is small and hardly warrants it." describing a section at Knights Ferry, he says 67 "Seventy feet of cross-bedded sandstone forms the upper part of the section. This sandstone contains biotite and about 30 percent of orthoclase, and like the sandstone at Valley Springs probably should have a separate name, but for the same reason a name has not been given."

At Chalk Bluffs, MacGinitie 68 found about 100 feet of "biotite sands" followed by 22 feet of conglomerate overlying sediments with lower Ione lithology and underlying the rhyolite series. He described them as rusty, cross-bedded, quartz-biotite sands with fresh feldspar. He also refers ⁶⁹ to biotite sands below tuffaceous yellow elay in the Cherokee hydraulic pit at Oroville Table Mountain, Butte County, and correlates them with the biotite sands at Chalk Bluffs.

The lithology and stratigraphic position of the biotite sands at Valley Springs, Knights Ferry, Cherokee, and Chalk Bluffs are the same as the lithology and stratigraphic position of the upper Ione member at Buena Vista and there is no reason to doubt that they may be correlated.

No direct evidence of the age of the upper Ione member was found in the area. However, Allen⁷⁰ considered the marine sandstone of the Buena Vista quarry to be part of the upper member of his Ione formation, which is apparently the same as the sandstone at the top of the type section of the upper Ione member. This sandstone contains fossils identified as of middle Eocene age.⁷¹ If this fossil zone is at the top of the upper Ione member then that member is certainly Eocene in part, at least.

Miocene (?) Valley Springs Formation

The Valley Springs formation was defined ⁷² as rhyolite-containing beds with no fresh and esitic material and as being stratigraphically above the non-volcanic Ione. The type section is an exposure on the west slope of Valley Springs Peak, near Valley Springs, Calaveras County. The lower beds in the Buena Vista area are altered to greenish-buff clay and are the clay rock originally included in the Ione by II. W. Turner.⁷³ A bed of coarse, erosion-resistant conglomerate, not far above the base of the formation, was originally mapped as part of the Pleistocene shore gravels,⁷⁴ but Piper ⁷⁵ presented evidence for its inclusion in the Valley Springs formation.

Sediments containing fresh rhyolitic material crop out on Buena Vista Peak above an elevation of 400 to 450 feet. A regional dip to the northwest carries the base down to about 250 fect along the crest of the greenstone ridge, and almost all of the hills west of the ridge are composed of Valley Springs sediments.

On Buena Vista Peak the Valley Springs formation is predominantly clay rock, with beds of coarse conglomerate, capped by 60 to 70 feet of hard vitreous rhyolitic tuff.⁷⁶ To the west, only a small proportion of the formation is clay rock, and the rest is unconsolidated greenish-tan or greenish-buff sands and one bed of conglomerate. A mesa about 3000 feet long and 1000 feet wide, just east of Buena Vista Peak, is capped by a bed of coarse, hard conglomerate 10 to 20 feet thick. Neither Piper 77 nor we found any Tertiary andesite in this conglomerate, so apparently it is part of the Valley Springs

- ⁶⁶ MacGinitle, p. 28.
 ⁶⁹ Ibid., p. 28.
 ⁷⁰ Allen, V. T., op. cit., pp. 357-358.
 ⁷¹ Clark, B. L., personal communication in Allen, V. T., op. cit., p. 358.
 ⁷² Piper, A. M., op. cit., pp. 71-72.
 ⁷³ Turner, H. W., op. cit.

 ⁶⁵ Logan, C. A., op. cit.
 ⁶⁹ Allen, V. T., op. cit., p. 359.
 ⁶⁷ Ibid.

⁶⁸ MacGinitie, H. D., op. cit., p. 14.

 ¹⁴ Ibid.
 ¹⁵ Piper, A. M., op. cit., pp. 57 and 72.
 ¹⁶ See Turner, H. W., Further contributions to the geology of the Sierra Nevada : U. S. Geol. Survey 17th Ann. Rept., pt. 1, p. 721, 1896 for a chemical analysis of this rock.
 ¹⁷ Piper, A. M., op. cit., pp. 57 and 72.

formation and not a Quaternary terraee gravel. Although most of the rhyolitie glass in the lower beds has been devitrified, a few small masses of rhyolite tuff are still glassy. One such rock body crops out on the county road about 700 feet south of hole 24-7.

Only four differential thermal analyses were made of material from the Valley Springs formation. This was not a sufficient number to establish any curve types as charaeteristic of the formation. Three of the eurves were Type III (tending toward IIIa) and one was Type II (tending toward IIa).

In most of the area the thickness of the Valley Springs formation has been reduced by erosion so that only the lower beds are present, but on Buena Vista Peak the base of the Valley Springs formation ranges in elevation from 390 feet to 475 feet and the top of the highest bed is 848 feet. The maximum thickness is therefore about 458 feet. The range of 85 feet in the elevation of the base in a small area indicates differential erosion during the interval between Ione and Valley Springs sedimentations, and the presence of an unconformity.

The source of the rhyolite was considered by H. W. Turner⁷⁸ to lie to the east in the higher parts of the Sierra Nevada; Piper 79 traced the source from the higher Sierra Nevada by way of channels that followed the valley of Lindgren's Tertiary Calaveras River.⁸⁰ These ehannels emptied into a basin at the present position of Valley Springs and the sediments spread out north and south. The Buena Vista area was on the northeastern edge of the area of original deposition as outlined by Piper.

Gale⁸¹ "... feels that (the Valley Springs formation) may be correlated tentatively with deposits of somewhat similar composition that extend across the California Trough into the Coast Ranges. Thus, although coincidence has not been proved, it seems likely that the well known marine Salinas shale of the Monterey group in the Coast Ranges is not only derived from the siliceons rocks and products of this epoch but throughout a wide area in the Pacific Border province actually includes tuffs that represent the epoch of rhyolite volcanism."

MaeGinitie,⁸² on a basis of fossil flora, correlates the Valley Springs with the San Pablo formation, and says it is uppermost Mioeene or possibly lower Pliocene.

Quaternary System

Terrace Deposits

Coarse-grained eonglomerate cemented by elay, rests on the tops and flanks of most of the hills north and northwest of Buena Vista and on some of the lower hills sonth of Jackson Creek. The eobbles in the conglomerate are very well rounded and are as much as 12 inches in diameter. Most of the cobbles are siliceous metamorphic rocks of the type present in the Calaveras formation, but some are white vein quartz or, rarely, Tertiary andesite. The matrix is usually greenish-brown to red-brown sandy clay. The terrace gravels contain gold and have been extensively mined wherever water was available.

FIGURE 17. Chitwood clay pit and Chitwood Hill. Entire hill is composed of upper Ione sediments. The hard sandstone at the top of the member is on the top of the hill. Pit is now idle, Camera bearing northeast.

The conglomerates are a thin veneer on terraees whose heights range from a few feet above the level of Jaekson Valley to over 400 feet to the north and on the flanks of Buena Vista Peak. Measured thicknesses ranged from 1 foot to 18 feet. A much greater thickness was indicated in many places by the mapping but this was usually the result of sliding and creeping of the gravel down over lower beds and of the complete covering and masking of a number of terraces arranged in step-pattern on hillsides.

The area is in what Piper⁸³ ealls the Arroyo Seco dissected pediment. The pediment was eroded to approximately its present form during the Victor epoch. The terrace deposits of the area are not high enough, in most places, to have rested on the original surface of the pediment nor are they low enough to be correlated with the Victor formation which, in this area, is at the level of the floor of Jackson Valley. They were probably formed during the Victor epoch by the rivers which dissected this portion of the Arroyo Seco pediment.

83 Piper, A. M., op. cit., pp. 21-22, 28-29.

Chitwood clay south of Fancher pit. The clay is hard FIGURE 18. enough to have been used by Indians for grinding nuts and seeds.

⁷⁸ Turner, H. W., The rocks of the Sierra Nevada: U. S. Geol. Survey 14th Ann. Rept., pt. 2, p. 485, 1894.
⁷⁹ Piper, A. M., op. cit., pl. 5.
⁸⁰ Lindgren, Waldemar, The Tertiary gravels of the Sierra Nevada of California: U. S. Geol. Survey Prof. Paper 73, pl. 1, 1911.
⁸¹ Gale, H. S., in Piper, A. M., op. cit., pp. 79-86.
⁸² MacGinitle, H. D., op. cit., p. 28.

Recent Alluvium

Alluvium is constantly being deposited and reworked along Jackson Creek and its tributaries, and during major floods it is being added to the floor of Jackson Valley. It is thin over most of the area but, from drill hole evidence, it may reach a thickness of 25 to 50 feet in parts of Jackson Valley. At Buena Vista Bridge on Jackson Creek there is 5 feet to 10 feet of dark red-brown clayey alluvium immediately below the surface followed by 4 feet to 10 feet of auriferous red or green sandy or clayey conglomerate with cobbles up to 6 inches in diameter. The eonglomerate is like the present stream gravel and is crossbedded and channeled. There is little organic matter compared to the soil above.

GEOLOGIC HISTORY

The oldest rocks that erop out in the area are the metamorphosed and esites and associated rocks of the Amador group, which were deposited during the Upper Jurassic on the already folded and metamorphosed sediments of the Paleozoic Calaveras formation. At the close of the Amador voleanism, sedimentation continued, forming the Mariposa slate. These formations were folded in Upper Jurassic⁸⁴ time to form the ancestral Sierra Nevada. Metamorphism took place during the folding and during the subsequent batholithic intrusion. Erosion gradually reduced the height of the mountains and furnished sediments for Jurassic, Cretaceous, and early Tertiary beds to the west. By Eocene time the mountains were low but the rivers had sufficient gradient to carry cobbles and boulders; and, even in the Buena Vista area, there was a relief of several hundred feet at the beginning of pre-Ione Eocene (?) sedimentation.

At the beginning of Ione time conditions ehanged in such a way that the sediments carried to the foot of the mountains became highly weathered. In discussing the reason for the change MacGinitie⁸⁵ presented evidence to show that the weathering took place during transportation and suggested that a rise in base level may have been the main cause. However, the evidence presented earlier in this paper concerning the development of the laterite and its relation to the sediments of the pre-Ione Eoeene (?) and lower Ione suggests that there was a change to a more tropical climate after pre-Ione Eocene (?) time,

Deposition of the Ione-type sediments continued with minor interruptions until the major period of erosion that closed Ioue time. Upper Ione sediments do not show as great a degree of weathering as do lower Ione sediments. This may have been due to a change to more temperate climate or to a change in the conditions of erosion.

During the Tertiary the Sierra Nevada began to rise and as a result the gradient of the southwestward flowing rivers was increased. The first slight Tertiary uplift of the Sierra Nevada may have come at the end of Ione time. Valley Springs deposition began with the eruption of rhyolite in the higher parts of Sierra Nevada. At the close of the rhyolite period, or possibly simultaneously with the last of the rhyolite eruptions, andesitie eruptious began in the east which resulted in a series of mud flows down the west slope of the mountains. The Buena Vista area was flooded with andesite breccia and conglomerate until the surface reached an elevation of about 800 feet.⁸⁶

 ⁴⁴ Taliaferro, N. L., op. cit., p. 285.
 ⁸⁵ MacGinitie, H. D., op. cit., pp. 17, 25-26.
 ⁸⁶ Piper, A. M., op. cit., pl. 4.

FIGURE 19. Buena Vista Buttes. Foreground is flat top of mesa held up by hard conglomerate in Valley Springs formation. Camera bearing east.

The present drainage pattern of the Sierra Nevada began to evolve in late (?) Miocene or possibly early Pliocene time with the eessation of the andesite mud flows and the initiation of consequent stream patterns on the Mehrten surface.⁸⁷ The land forms of the Buena Vista area were the result of the late Pleistocene dissection of part of the Arroyo Seco pediment. Erosion was accelerated during these periods by further elevation of the mountains. Lindgren 88 and Matthes 89 said that the major elevation of the Sierra Nevada took place in the Pleistocene, and estimated that the elevation of the crest of the range was increased by 6000 feet at that time.

ECONOMIC GEOLOGY

Clay

The present production of clay in the area is limited to a deposit of the Ione sand with a low iron content for use in the manufacture of white portland eement. Clay deposits occur in the area, however, that would furnish raw material for the manufacture of refractories and whitewares and for use as fillers in rubber and paper. Because there is a critical need for clays with high deformation temperatures for the manufacture of refractories, the investigation of deformation temperatures was emphasized in the study of the clays in the area.

Technical Data on Refractory Clays. Pyrometrie cone equivalent (P. C. E.) is used as a measure of refractoriness of clays and fireclay refractories. The industry adheres to the following classification for fireclay brick on the basis of refractoriness:

super duty—equal to or more than P.C.E. 33,

greater than 1745° C, or 3173° F, at a temperature increase of 100° C. per hour.

high heat duty-P.C.E. 31-32,

greater than 1680° C, or 3056° F, at a temperature increase of 100° C. per hour.

medium heat duty-P.C.E. 29-30,

greater than 1640° C, or 2984° F, at a temperature increase of 100° C. per hour.

low heat duty-P.C.E. 19-28,

greater than 1515° C, or 2759° F, at a temperature increase of 100° C. per hour.

^{*7} Ibid., pp. 24-25.
 ^{*8} Lindgren, Waldemar, The Tertiary gravels of the Sierra Nevada of California: U. S. Geol. Survey Prof. Paper 73, pp. 46-48, 1911.
 ^{*9} Matthes, F. E., Geologic history of the Yosemite Valley: U. S. Geol. Survey Prof. Paper 160, pp. 43-44, 1930.

FIGURE 20. South side of mesa shown in figure 19. Overhang of hard conglomerate caused by erosion of soft clay and sandstone below.

FIGURE 21. Terrace gravel resting on Cheney Hill clay in old goldplacer workings about 1000 feet northeast of Buena Vista. Camera bearing east.

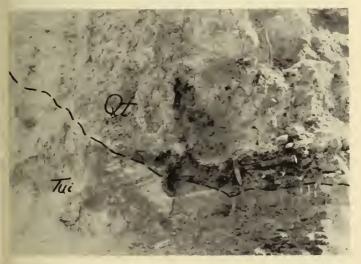


FIGURE 22. Channel cut into upper Ione brown sandstone, filled with terrace gravel. East face of Fancher pit.

When equipment is not available for determination of the P.C.E., especially at the high heat and super duty temperature levels, a knowledge of the relationship of P.C.E. to other properties may be of considerable value. In this study the possible relationships between P.C.E., fired color, and the type of kaolinitic curve, as determined by the differential thermal analyzer, were explored.

The data for 49 clays are listed in table 2 and plotted as fired color versus P.C.E. in figure 24. Sufficient correlation exists to enable the estimation of the probable P.C.E. range for a given clay where fired color and the differential thermal analysis are known. On this basis the following grouping can be used as a gnide:

Reflectance of 60%-100% for green filter *

Clay	P. C. E.
Type I	
Type I modified	26-32
Type II	
Type II modified	23-30
Type III	no examples
Reflectance of 30%-60% for green filter	
Type I	20-28
Type II	15-28
Type III	15-23
Reflectance of 0%-30% for green filter	
Types I, II, III	< 19

 In general, the high reflectance values correspond to white or very light tints or shades, usually of cream, buff, tan, and pink; the lower values to deeper colors.

A more specific classification is not possible with the present available knowledge of the structure and composition of the clays. The marked dependence of refractoriness on color is due to the fact that the iron oxide responsible for the color is also a flux, an especially strong one if present in the form of ferrons compounds.

An important conclusion is that the only clays suitable for super duty are kaolinites with mumodified or halloysite-tending Type I curves and with fired color (1000° C.) reflectance values greater than 60 percent for green filter as measured with a reflectometer type of instrument.

Clay Production. Four clay pits are in the area. Three, the Woolford, Fancher, and Kaolin-Fye pits, are in the upper lentil of the lower Ione member, and the other, the Chitwood pit, is in the Chitwood elay of the upper Ione member. The Fancher pit has been described by Dietrich ⁹⁰ for the period during which it was operated by W. S. Dickey Clay Manufacturing Company, Until 1927 the operations were entirely open pit but in that year tunneling was started in order to get under a thick overburden. The clay production was from Cheney Hill clay which had a P.C.E. of 33 to 34.91 The Woolford pit is also in Cheney Hill clay, At the Woolford locality the Cheney Hill clay has a P.C.E. of 31 to 33.92 The Kaolin-Fye pit is operated by the Calaveras Cement Company and supplies a mixture of nearly iron-free clay and quartz sand for the manufacture of white portland eement. Work on the pit was first began in January 1950. The Chitwood pit was worked as a source of the upper Ione Chitwood clay. The elay is very sandy and has a P.C.E. of 30 to 31.93

¹⁰ Dietrich, W. F., The elay resources and the ceramic industry of California: California Div. Mines and Mining Bull. 99, pp. 58-59, 1928.

^{19/28.} ²¹ Ibid., p. 280. Bates, T. F., op. cit., p. 24.

⁹² 1bid.

^{93 1}bid.

FIGURE 23. Old gold-placer workings in alluvium just east of Fancher pit. Camera bearing east.

Table 2. Differential thermal analysis, pyrometric cone equivalent,
and fired color for samples of clay from the Buena Vista area
and of commercial clays from near the town of Ione.

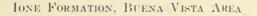
Hole no.	Depth	D.T.A. type	P.C.E.	(Cla]	otometer d ay calcined 1,000° C.) Filter colo	i to r
				Green	Amber	Blue
1: 1: 1: 1: 1: 1: 2:	26' -129' 32' -138' 39' -143' 49' -151' 55' -155'7" 77'1" 92' -193'6" 17' -229' 42'3"-246'	Ia I \rightarrow Ia II IIa II \rightarrow Ia II \rightarrow Ia II II	$ \begin{array}{r} 31 + \\ 33 \frac{1}{2} \\ 31 + \\ 23 \\ 33 \\ 33 - \\ 20 - 23 \\ 31 \frac{1}{2} \\ 31 \frac{1}{2} \end{array} $	70.5 77.0 72.0 70.5 81.0 65.5 39.0 75.0 77.0	76.0 82.0 77.0 74.5 85.0 75.0 48.0 79.5 83.0	55.062.556.052.566.0 $31.562.064.0$
20	50' 65'9"-269' 24' -325' 26' -329'	II Ir III III	26 26 19—	$34.5 \\ 51.0 \\ 47.0 \\ 48.5$	$51.0 \\ 58.0 \\ 55.0 \\ 56.5$	$42.5 \\ 35.5 \\ 36.5$
3:	20' -329' 29' -334' 34' -338' 66'	III III III III	$19+18\frac{1}{2}$ $18\frac{1}{2}$ 16	48.0 51.5 49.5 43.0	50.0 60.0 58.0 55.5	$36.5 \\ 35.0 \\ 32.0$
18-2	69' 83' 00'	III II III IIr	31 - 31 - 23	73.0 70.0 69.0	78.5 75.5 73.0	
1 2:	59' 25' 53'	Ir Ia→II IIa→11I	31 - 26 20+	83.0 47.0 48.0		27.0
18-3 1 2	68' 16' 56'	II→Ia Ia ? (carbon)	28 26 141/3	$ \begin{array}{c} 61.0 \\ 66.0 \\ 21.5 \end{array} $	70.0 75.0 31.0	46.0 46.0 11.5
2	74' -277'4" 87' 64'6"	III III Ih	23 - 16 31 ¹ / ₂	50.5 40.0 67.5		$24.5 \\ 18.0 \\ 56.0$
24-3 3	6'6" 03' 25'6"	III→IIIb III Ih	$15\frac{1}{2}$ 19 33+	49.0 54.0 69.0		$24.0 \\ 35.5 \\ 58.0$
1 2	37' 02' 89'	Ih Ih I	34 + 17 + 23 - 23 - 23 - 23 - 23 - 23 - 23 - 23	72.0 19.0 31.0	77.5 28.0 39.5	62.0 7.0 23.0
7-1	04' 40' 57'	l Ia II I	14 33	18.0 74.0 81.0	25.0 79.0 84.5	9.0
8	57 69' 21'	lr Ir	26 26	47.5 80.5 40.0	63.0 84.0 48.5	
No. 1* No. 2*		I1→Ia Ih 1→Ia	15 33	40.0 81.0 74.0 77.5	48.5 85.0 79.5 81.5	
		lh I→la Ir	34 33 30½	74.5 83.5	80.0 86.5	
		1 Ih IIr 1I→1a	$ \begin{array}{r} 34 + \\ 34 \\ 30 \\ 20 \end{array} $	70.0 63.0 82.5 29.5	77.0 73.0 86.0 46.5	

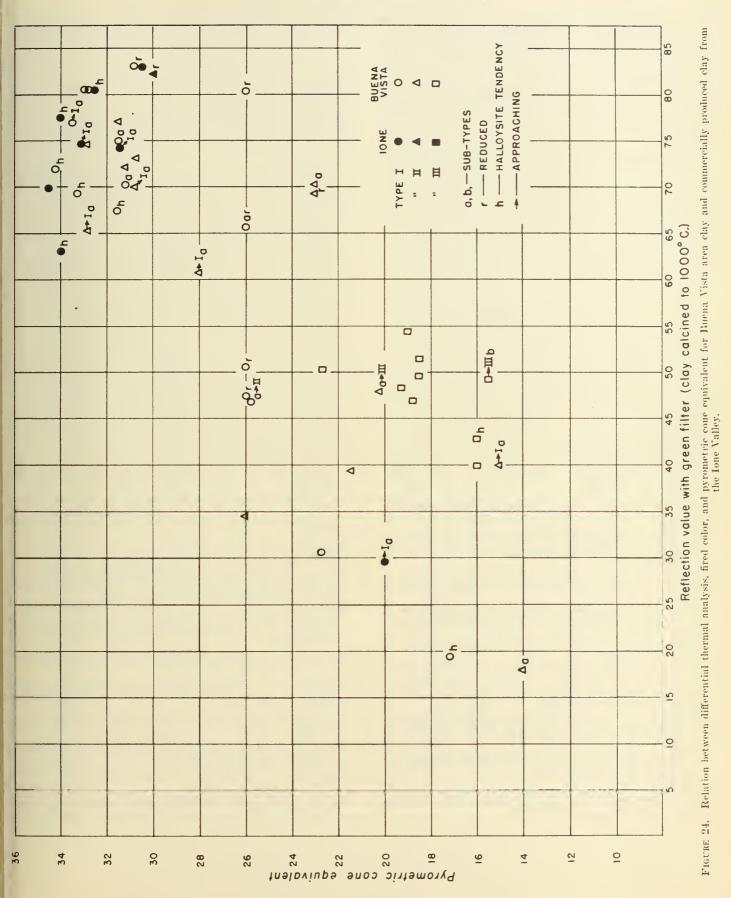
^{*} Samples no. 1 to no. 9 are typical commercial clays from the lower lone member in the vicinity of the town of lone

No Edwin clay has been mined in the area, but the geologic mapping and the study of the drill cores revealed the presence of Edwin clay at the surface and at depth along both sides of the greenstone ridge south of Jackson Creek. In every place where the Edwin clay is found, it rests directly on sedimentary laterite. The largest outcrop area of Edwin clay is in a stream bed immediately east of the large greenstone outcrop south of Jackson Valley.

Other Minerals

Lignite, gold, and building stone have been produced in the area in the past. Lignite was mined from the middle member of the lower Ione for many years at the Buena Vista coal mine, about a mile south of Buena Vista.⁹⁴ The American Lignite Products Company is operating a plant at the location of the Buena Vista coal mine for the extraction of Montan wax from lignite. The plant started operations with raw material from the same area but now uses lignite from near Ione. Gold was discovered in the arca in 1854 or 1855,95 and in 1856 a 15mile ditch was built to supply water for placer mining. These operations continued until at least 1880⁹⁶ and covered most of the slopes and gulches that are below deposits of terrace gravel. The latest gold production was from dredge operations in the upper end of Jackson Valley.


Stone was quarried from the hard sandstone member of the upper Ione, probably for local construction of buildings and fences. The quarries still in evidence are at the tops of Chitwood Hill and the hill 3000 feet east of Woolford pit, and on the side of Buena Vista Peak. Hard rhyolite tuff at the top of Buena Vista Peak has also been quarried.


VALUE OF CERAMIC TESTS IN GEOLOGIC INVESTIGATION

Each of the ceramic techniques employed in this study was valuable in helping to interpret the geology and mineralogy of the area and to indicate the economic value of the clays. It is apparent that these techniques would have many applications in other geologic studies as well as in the search for clays useful in industry.

Clay mineralogy is complicated by the numerous possible isomorphous substitutions and, for that reason, a breakdown of the kaolinite group minerals into a number of types, as presented here, would be extremely difficult based only on microscopic and X-ray diffraction analyses. In contrast, the interpretation of a series of differential thermal curves was relatively simple. It is therefore a powerful aid in indicating the presence of minor variations in structure. Differential thermal analyses aid greatly in the identification and determination of formations and strata and in correlating them from hole to hole. The determination of the type of elay resulting from the weathering of certain rock types provides valuable information for the interpretation of geologic his-

⁶⁴ Tucker, W. B., Amador County: California Min. Bur. Rept. 14, p. 11, 1915.
Logan, C. A., Auburn field division—Amador County: California Min. Bur. Rept. 17, p. 413, 1921.
Logan, C. A., Sacramento field division—Amador County: California Min. Bur. Rept. 23, pp. 146-147, 1927.
Allen, V. T., op. cit., pp. 408-409.
Piper, A. M., op. cit., pp. 82-83.
⁶⁴ Mason, J. D., op. cit., p. 265.
⁶⁹ Stretch, R. H., A report on the Amador Canal and Mining Company, p. 27, San Francisco, 1880.

tory. The fact that Type I kaolinitic clay results from the weathering of greenstone and Types II and III kaolinitic clays are a product of the weathering of Mariposa slate is indicative of sources of sedimentary clays of these types. It is of economic value to know that only clays of Type I, with very light shades of color (approaching white) are known sources of super duty clays. It is therefore indicated that the lower Ione member is probably the only commercial source of super duty clays in the Buena Vista area.

An indirect value of the differential thermal analyzer is the relative simplicity of the apparatus and the ease with which curves can be obtained by untrained opcrators, in contrast with the amount of training necessary to undertake petrographic and X-ray diffraction analyses and the time required for P.C.E. determinations.

It is hoped that the paper has shown the value of ceramic tests in the interpretation of geology, and that they should be considered as an aid in geologic studies, particularly of sedimentary areas.

SELECTED BIBLIOGRAPHY

- Allen, V. T., The Ione formation of California: Univ. California, Dept. Geol. Sci., Bull., vol. 18, pp. 347-448, 1929.
- Bates, T. F., Origin of the Edwin clay, Ione, California : Geol. Soc. America Bull., vol. 56, pp. 1-38, 1945.
- Bradley, W. F., The structural scheme of attapulgite: Am. Mineralogist, vol. 28, p. 1, 1943.
- Brindley, G. W. (editor), X-ray identification and crystal structures of clay minerals: The Mineralogical Society (Clay Mineral Group), 345 pp., London, 1951.
- Clark, B. L., The stratigraphy and faunal relationships of the Meganos group, middle Eocene of California : Jour. Geology, vol. 29, pp. 125, 161-165, 1921.
- Clark, B. L., and Vokes, H. E., Summary of the marine Eocenc sequence of Western North America: Geol. Soc. America Bull., vol. 47, pp. 851-878, 1936.
- Dickerson, R. E., Fauna of the Eocene at Marysville Buttes, California; Univ. California, Dept. Geol. Sci., Bull., vol. 7, pp. 257-298, 1913.
- Dickerson, R. E., Stratigraphy and fauna of the Tejon Eocene of California: Univ. California, Dept. Geol. Sci., Bull., vol. 9, pp. 387-417, 1916.
- Dietrich, W. F., The clay resources and the ceramic industry of California : California Div. Mines and Mining Bull. 99, pp. 58-59, 280, 1928.
- Edelman, C. H., and Favejee, J. Ch. L., On the crystal structure of montmorillonite and halloysite: Zeitschr. Kristallographie, band 102, pp. 417-431, 1940.
- Grim, R. E., Modern concepts of clay materials: Jour. Geology, vol. 50, pp. 225-275, 1942.
- Grim, R. E., Bray, R. H., and Bradley, W. F., The mica in argillaceous sediments: Am. Mineralogist, vol. 22, pp. 813-829, 1937.
- Gruner, J. W., The crystal structure of kaolinite: Zeitschr. Kristallographie, band 83, pp. 75-88, 1932.
- Hendricks, S. B., Concerning the crystal structure of kaolinite Al₂O₅·2SiO₂·2H₂O and the composition of anauxite: Zeitschr. Krystallographie, band 95, p. 247, 1936.
- Hendricks, S. B., On the crystal structure of the clay minerals: dickite, halloysite, and hydrated halloysite: Jour. Mineralog. Soc. America, vol. 23, pp. 295-301, 1938.
- Hendricks, S. B., The crystal structure of nacrite Al₂O₃·2SiO₂·2H₂O and the polymorphism of the kaolin minerals; Zeitsehr, Kristallographie, band 100, pp. 509-518, 1939.

- Hoffman, U., Endell, K., and Wilm, D., Kristallstruktur und quellung von montmorillouit (Crystal structure and swelling of montmorillonite): Zeitschr. Kristallographie, band 86, pp. 340-348, 1933.
- Jenkins, O. P., Geologic map of California : California Div. Mines, scale 1 : 500,000, 6 sheets, 1938.
- Jenkins, O. P., Geology of placer deposits, in Averill, C. V., Placer mining for gold in California: California Div. Mines Bull. 135, 2nd ed., fig. 64, p. 176, 1950.
- Krumbein, W. C., and Sloss, L. L., Stratigraphy and sedimentation, pp. 150-151, San Francisco, W. H. Freeman and Company, 1951.
- Lindgren, Waldemar, U. S. Geol. Survey Geol. Atlas, Sacramento folio (no. 5), p. 3, 1894.
- Lindgren, Waldemar, The Tertiary gravels of the Sierra Nevada of California: U. S. Geol. Survey Prof. Paper 73, pp. 21-28, 46-48, 196-197, pl. 1, 1911.
- Logan, C. A., Auburn field division—Amador County: California Min. Bur. Rept. 17, p. 413, 1921.
- Logan, C. A., Sacramento field division—Amador County: California Min. Bur. Rept. 23, pp. 146-147, 1927.
- MacGinitie, H. D., A middle Eocene flora from the central Sierra Nevada: Carnegie Inst. Washington Pub. 534, 167 pp., 1941.
- Manual of A. S. T. M. standards on refractory materials: Am. Soc. Testing Materials, pp. 69-72, 1948.
- Marshall, C. E., Soil science and mineralogy: Soil Sci. Soc. America Jour., vol. 1, pp. 23-31, 1937.
- Marshall, C. E., The colloid chemistry of the silicate mincrals, p. 14, Academic Press, 1949.
- Mason, J. D., History of Amador County, California, pp. 125-136, 189, 242-250, 265, Oakland, Thompson and West, 1881.
- Matthes, F. E., Geologie history of the Yosemite Valley: U. S. Geol. Survey Prof. Paper 160, pp. 43-44, 1930.
- Pask, J. A., and Davies, Ben, Thermal analysis of clay minerals and acid extraction of alumina from clays; U. S. Bur, Mines Rept. Inv. 3737, 28 pp., 1943.
- Piper, A. M., Gale, H. S., Thomas H. E., and Robinson, T. W., Geology and ground-water hydrology of the Mokelumne area, California: U. S. Geol. Survey Water-Supply Paper 780, 230 pp., 1939.
- Speil, Sidney, Berkelhamer, L. H., Pask, J. A., and Davies, Ben, Differential thermal analysis—its application to clays and other aluminous minerals: U. S. Bur. Mines Tech. Paper 664, 81 pp., 1945.
- Sprague, Malcolm, Climate of California, in Climate and man: U. S. Dept. Agr. Yearbook 1941, pp. 793-795, 1941.
- Stearnes, H. T., Robinson, T. W., and Taylor, G. H., Geology and water resources of the Mokelumne area, California: U. S. Gcol. Survey Water-Supply Paper 619, 402 pp., 1930.
- Stewart, Ralph, Lower Tertiary stratigraphy of Mount Diablo, Marysville Buttes, and west border of Lower Central Valley of California: U. S. Geol. Survey Oil and Gas Prelim. Chart 34, Sheet 2, 1949.
- Stretch, R. H., A report on the Amador Canal and Mining Company, p. 27, San Francisco, 1880.
- Taliaferro, N. L., Manganese deposits of the Sierra Nevada, their genesis and metamorphism: California Div. Mines Bull. 125, pp. 280-286, 306-307, 1943.
- Tucker, W. B., Amador County: California Min. Bur. Rept. 14, p. 11, 1915.
- Turner, H. W., The rocks of the Sierra Nevada : U. S. Geol. Survey 14th Ann. Rept., pt. 2, p. 485, 1894.
- Turner, H. W., U. S. Geol, Survey Geol. Atlas, Jackson folio (no. 11), 1894.
- Turner, H. W., Further contributions to the geology of the Sierra Nevada : U. S. Geol. Survey 17th Ann. Rept., pt. 1, p. 721, 1896.

APPENDIX

Record of drill holes in the Buena Vista area.

HOLE 7-1

220 feet S of Ringer north property line, 630 feet E of Ringer west property line; 1650 feet WNW of Buena Vista. Elevation 309 feet.

		kness inches		pth inches			kness inches	Dej feet	
No core	30		30		Fine-grained gray-white argillaceous sandstone		9	143	
Eccene lone formation					Dark gray carbonaceous sandy clay	ŏ	G	143	6
Lower lone member					Gray-white silty clay containing	5			
Brown lignite containing much clay	4		34		pebbles	0	6 -	144	
Buff yellow-stained clay			34	5	Fine-grained gray carbonaceous	;			
Pale brown, yellow-stained clay	7	7	42		saudstone			147	
Light cream-colored clay		5	45	- 6	Dark-gray, earbonaceous, argilla			4.17	0
Dark-gray carbonaceous clay		1	46	6	ceous, medium-grained sandstone.		G	147	6
Lignite		6	47		White clay; some silt		6	155	
Dark-gray carbonaceous clay			51		Conglomeratic white clay; some silt			164	
Gray-brown clay		1	52	1	Fine-grained, white, argillaceous saudstone			179	
Lignite		11	54	C	Gray earbouaceous clay			185	
Brown elay White clay		6 2	54 60	$\frac{6}{8}$	Sandy lignite			186	
White clay ; some sand grains		4	62	0	Carbonaceous sandy clay		9	186	9
White sandy clay		8	62	8	Argillaceous lignite		3	187	•/
Light-gray sandstone and some clay		4	64	0	Carbonaceous clay		9	187	9
Conglomerate; weathered to buff		•			Argillaceous lignite	0	3	188	
color		9	64	9	Gray carbonaceous sandy clay			204	
White argillaceous sandstone con-					Light-brown elay		ā	205	- 5
taining iron nodules	3	4	68	1	Highly carbonaceous elay		ī	209	
Buff sandstone; very abundant iron					Dark-gray carbonaceous clay, sandy				
nodules		11	71		lenses		G	213	6
Light-buff coarse-grained sandstone.	. 2		73		Buff silty clay		6	214	
Buff argillaceons fine-grained sand-			_		Gray earbonaceous clay		0	215	0
stone			74		Buff silty clay; iron nodules		9	218	9
Buff argillaceous medium-grained					Buff silty clay Light-buff and red mottled sandy		3	219	
sandstone			76		clay			221	
Coarse-grained sandstone containing			0.1		Red saudy clay, some buff mottling			$\frac{221}{228}$	
some clay ; irou-oxide cement	- 5		81		Red and buff mottled clay		2	230	2
Fine-grained white, argillaceous			84		Buff clay	1	1	231	3
sandstone, some red stains Buff clay			94			1	*		.,
Buff conglomerate			- 98		Eocene (?) unnamed pre-lone beds				
Reddish-buff clay			101		Gray argillaceous siltstone	-4		235	3
Yellow-brown clay			105		Dark-gray carbonaceous argillaceous	4			
Conglomerate			108		siltstone	- 0	6	235	9
Dark gray carbouaceous clay			110		Very light-brown argillaceous silt				
Very light-buff clay, some silty part-					stone	. 0	G	236	
ings, some carbonaceous streaks	. 4	9	114	9	Light-brown argillaceous siltstone	. 1		237	6
Purplish clay		2	115	11	Gray carbonaceous argillaccons silt		C	0.4.4	
Very dark-gray clay containing lig-			110	-	stone Dark-gray carbonaceous argilla	6	6	244	
nite seams		G	116	5	ceous siltstone			256	
Very dark-gray sandy clay		7	117		Dark-gray carbonaceous conglomer				
Conglomeratic sandstone ; dark gray			124		atic fine-grained sandstone			259	
grading to light-brown					Quartz pebbles in greenish clay				
No core. (One piece of white clay) -	. 10		134		untrix	0	6	259	6
Fine-grained white argillaceous	9		137						
sandstone			104		Jurassic Amador group				
Gray-white sandstone with clay		6	138	6	Green clay containing some lighter	r			
cement		0	103	0	colored areas	. 2	6	262	
Conglomeratic gray-white sandstone		G	139		Highly altered greenstone	5		267	0
with clay cement		6		C	Fresh greeustoue		3	269	3
Red and buff clay and pebbles			140	6	Greenstone, partially altered to		0	13-11	~
Gray-white conglomeratic sandstone		6	142		clay		2	271	5
Lignite	. 0	3	142	3	Fresh grecustone	. 1	4	273	

HOLE 13-1

20 feet E of Fancher west property line, 110 feet N of Fancher south property line, Elevation 244 feet.

	Thi	ckness	Depth				
	feet	inches	feet	inches			
No core	.236		236				
Eocene lone formation							
Lower lone member							
Ferruginons nodule	1		237				
Yellow-stained clay		9	237	-9			
White clay		6	240	3			
White sandy clay		6	240	9			
White clay		3	242				
White, yellow-stained clay		5	243	5			
White sandy clay; yellow stain		6	243	11			
White clay		1	244				
White argillaceous sandstone; yel							
low stain			245				
White clay		2	245	3			
Light gray clay		6	253	. 9			
Pebbles, 2 inches in maximum di							
ameter	. 0	3	254				
Fine-grained cream colored saud							
stone			274				
Light-gray silty clay		6	275	6			
Light-gray silty clay; iron nodules		6	284				
White clay; iron nodules	_ 10		-294				
Eocene (?) unnamed pre-lone beds							
Green silty clay; iron nodules							
(siderite)	. 10		304				
Gray-green silty clay; siderite							
nodules			313				
Buff clay	_ 1		-314				

HOLE 13-2

200 feet S. of county road, 30 feet W. of Fancher cast property line. Elevation 259 feet.

		ckness		cpth
Quaternary alluvium (?)	feet	inches	feet	inches
Sand, gravel, and clay *	49		-49	
Eocene lone formation				
Lower Ione member				
Lignite *	1		50	
Sand, gravel, and clay *			90	
Lignite *			107	
Clay, sand, and gravel *	55		162	
White medium-grained sandstone;				
some clay	-2		-164	
White medium-grained sandstone;				
iron nodules and clay	1		165	
Yellow to red sandy clay			168	
Buff to red clay with a little sand	- 3		171	
White sandy clay heavily stained				
with red and yellow	1	2	172	2
Mottled red and yellow sandy clay	0	10	173	
White clay	0	6	173	6
Reddish sandy clay	1	6	175	
White sandy clay		9	175	9
Pink and dark-red clay	- 0	63 63	-176	
Pink-stained saudy white clay		6	-176	6
Coarse, very angular quartz grains	5			
cemented with red iron compound		6	177	
- 1				

	T	hic	kness	De	pth
	fee		inches		inches
White clay with red stains	. ,	7		184	
Red and yellow banded clay		1	2	185	2
White clay		3	4	188	6
Light-brown clay		0	6	189	
Light-brown fine sandy clay with		_		100	
reddish streaks		1	9	190	9
Light-brown argillaceous sandstone		0	-1	191	1
Light-brown clay with some silt and		1	11	193	
fine sand grains Brownish-gray clay		4	- 11	195	9
Gray clay with scattered sand grains		$\frac{1}{2}$	11	$\frac{104}{200}$	8
Brownish-gray sandy clay		ĩ	1	201	9
Medium-gray clay with some sand		-	-		Ŭ
grains; carbonaceous		2	3	204	
Light-gray clay with some sand	1				
grains		1		205	
Gray clay		2	9	207	9
Medium-gray clay with pieces of car-		_			
bonaceous material		2	9	210	6
Light-gray clay	-	3	6	214	
Sandy clay and silt ranging in color		1		965	
from gray to black *		1		265	
Gray medium-grained sandstone yellow stain		0		275	
Sandy clay and silt ranging in color		0			
from gray to black *		6		301	
Saudy red clay *		3		304	
Deep-red conglomeratic materia					
with white fragments		2		-306	
Rust-brown clay containing a few	7				
pebbles		2	3	308	3
White clay with red stains and		0	0	000	
pebbles		0	9	309	
Rust-brown sandy clay with smal		1	6	313	6
pebbles Red clay with some sand grains		$\frac{1}{3}$	G	317	0
Buff-colored, weathered	-	.,	0	011	
conglomerate	_	2^{-}	6	319	6
Red and buff mottled argillaceou					
sandstone		1	6	321	
Brown-buff argillaceous sandstone	_	1	2	322	2
Light-buff, weathered					
conglomerate	_	0	10	323	
Yellow, weathered conglomerate	_	1		324	
Dull-red and yellow, weathered con	-				
glomerate		0	6	-324	6
Coarse-grained yellow sandstone cou					
taining much clay	-	0	6	325	
Dull-red conglomerate	_	1		326	
Dull-red and yellow, weathered con	-				
glomerate		1	3	327	3
Dark-yellow banded siltstone	_	0	3	327	6
Fine-grained dark gray rotten silt					
stone		0	9	328	3
Dark-gray very coarse rotten sand			0		
stone		1	9	330	
Rotten, chalky-white couglomerate		1	6	331	6
Rotten, dark-gray conglomerate		1		332	6
Rotten, white conglomerate	-	1	6	334	
Eocene (?) Unnamed pre-lone beds (2)				
Green and white weathered couglom					
erate		1		335	
	-				

* No core, description from driller's log.

HOLE 18-1

Approximately 1215 feet N. 73° E. of top of Chitwood Hill, approximately 50 feet south of Kovacevich north property line. Elevation 254 feet.

Quaternary alluvium		ickness inches		epth inches			kness inches	De	pth inches
Caving sand and gravel *		meneo	26	meneo	Light-yellow clay		incres	247	incres
0 0					Buff sandy clay			244	
Eocene lone formation (?)					White and buff clay			249	
Upper lone member (?)					White clay	Ê Ô	2	249	2
Green clay *	. 83		109		Buff silty clay with red stain		4	252	$\overline{6}$
					Light buff clay		6	256	
Lower lone member					White sandy clay some buff stain		9	258	9
Lignite *			115		White quartz gravel *	_ 5	3	264	
Lignite		0	118	0	Carbonaceous argillaceous sand-	-1		0.05	
Dark-gray carbonaceous clay		3	118	3	stone White argillaceous sandstone with			265	
Gray clay, some sand White clay		0	$\frac{123}{126}$		clay chips and iron nodules			269	
Pale-brown clay		6	$120 \\ 129$	6	White siliceous sandstone, clay ce			200	
Brown clay		6	130	0	ment		6	271	6
Lignite		3	130	3	Gray carbonaceous silty clay with		0		0
Brown clay		8	130	11	some sand		6	275	
Lignite	. 1		131	11	Gray sandy clay	. 0	6	275	6
Brown clay		4	133	3	White clay with some silt and col				
Pale-brown clay		3	139	6	ored pebbles		9	276	3
Light-gray sandy clay		6	141		Red sandy clay with buff spots		3	280	6
Gray sandy clay		e	143	C	Red and buff clay with some silt		6	285	
Gray-green argillaceous sandstone White clay with some sand		6 6	$\frac{144}{151}$	6	Red, yellow, and white mottle		0	000	0
Light-gray clay		3	151	3	sandy clay White sandy clay with yellow		3	288	3
Fine-grained light-gray sandstone			11		stains, iron nodules		9	290	
with clay cement		9	153		Dark-yellow sandy clay with red an		47	200	
Light-gray clay			155		white areas			294	
Dark-gray clay		6	155	6	Yellow and white argillaceous silt			-01	
Carbonaceous clay, some lignite	. 6	6	162		stone	_ 1		295	
Carbonaceous clay with some sand			164		Weathered conglomerate; variou				
Carbonaceous clay		0	165	0	colored pebbles in pink to brow				45
Lignite with abundant clay		8 5	$\frac{165}{166}$	8 1	matrix with transition to whit			0.00	
Carbonaceous clay Lignite with abundant clay		3	166	4	matrix between 297' and 298' White clay with sand grains, som	- 8		303	
Carbonaceous clay	ŏ	8	167	т	pale green areas	e _ <u>2</u>	3	305	3
Lignitic clay		8	168	8	Deep-red clay with quartz pebble		0	000	0
Slightly silty carbonaceous clay		7	171	3	and white patches		9	311	
Lignite with a few clay partings	. 2	6	173	9					
Gray argillaceous sandstone		9	175	6	Eocene (?) unnamed pre-lone beds				
White clay			181	6	Reddish buff silty clay with some				
White sand with clay cement			182	6 6	pebbles	_ 2		313	
Cream-colored clay Cream-colored clay with iron nodules		6	$\frac{187}{188}$	0	Yellow-brown clay with some sand			014	
Cream-colored clay		0	189		grains White clay with sand grains, ligh			314	
Light-gray clay with some sand					buff stains			315	
grains		6	192	6	Yellow to reddish-yellow clay with			010	
Light-gray clay		6	194		sand grains			317	
Light-gray sandy clay		2	195	2	White sandy clay	. 0	9	317	9
Light-gray clay very little sand		10	198		Yellow to reddish yellow clay with				
White clay White clay with dark brown specks;	14		212		sand grains		3	320	
2" pebble at 213'	2		215		White sandy clay			324	
White clay with a 4" dark brown	.,		-10		Green clay	4		331	
fragment of wood at 215' 6"	2		217		Greenish clay with scattered sand	1		335	
Gray sandy clay	15	4	232	4	and pebbles		9	335	9
Gray sand with clay cement	- 0	5	232	9	Greenish clay with some sand		6	338	3
Light-gray clay and sand	3	3	236		Greenish sandy silt with iron nod	-			
Light-gray sandy clay with slight					ules	- 20 -	9	359	
yellow stain	1		237		Greenish silty clay			369	
Light-yellow clay with some sand					Greenish-white sandy clay with yet				
grains			239		lowish stains	. 6		375	
Light-yellow sandy clay	3		242		• No core, description from driller's log.				

Special Report 19

HOLE 18-2

190 feet east of Ringer we<mark>st property line, 400 feet north of J</mark>ackson Creek. Elevation 270 feet.

	Thi	ekness	D	epth		Thi	ckness	D	epth
Quaternary alluvium (?)	feet	inches	feet	inches		feet	inehes	feet	inches
Sand and gravel *	51		51		Gray carbonaceous medium-grained	1			
					sandstone with some buff stains	. 10		184	
Eocene lone formation					Dark-gray micaceous finc-grained				
Lower lone member					sandstone			193	
Lignite *	3		54		Dark brownish-gray sandstone with				
Dark-gray carbonaceous clay		2	54	2	clay, some pebbles and some plant remains			194	
Lignite		2	54	4	Light-brown clay with scattered	- I		194	
Light-brown fine sandy clay		4	55	8	pebbles	_ 0	9	194	9
Lignite			61	8	Light-brown clay with abundant fine		v	101	v
Transition to pale-brown clay		7	62	3	sand and plant remains		3	204	
Pale-brown clay	. 1	9	64		Brownish carbonaceous clay with				
Very pale-brown clay	15		79	_	some pebbles	_ 2		206	
Lignite		2	80	2	Dark-gray carbonaceous siltstone			209	
Brown clay		10	82	0	Dark-gray carbonaceous argillaceou				
Lignite		3	82	3	sand		3	210	3
Pale-brown clay with some silt		9	84		Dark-red sand with carbonaceou				
White clay with small red areas			94 99		material	_ 0	3	210	6
White clay wilt			105		Dark-gray carbonaceous	0	2	010	8
Pale-brown argillaceous silt Pale-brown clay			113		argillaceous sand	- 0	2	210	0
Fragments of clay and lignite			114		Dark-red sand with carbonaceous material	. 0	4	211	
Lignite with clay		3	114	3	Dark-gray sandy clay with carbon		4	211	
Dark-gray carbonaceous clay		9 9	115	0	aceous material			214	
Lignite		v	116		Fine-grained dark gray carbonaceou			211	
No core			119		sandstone with much clay		4	219	4
Lignite			121		Lignite		1	219	
Brown clay			122		Fine-grained dark-gray carbonace				
Lignite			123		ous sandstone with much clay	_ 4	7	224	
Brown clay	. 0	3	123	3	Buff clay with some sand and smal	11			
Lignite	. 5	3	128	6	iron nodules		4	225	4
Dark-brown silty clay		3	130	9	Gradation to red and buff mottle				
Lignite		1	132	10	clay with some sand and iro		-	0.0 "	0
Clay		2	133		nodules		5	225	9
Lignite		~	134	5	Red and buff mottled clay with som		0	990	
Dark-gray carbonaceous saudy clay		$\frac{5}{7}$	$\frac{135}{136}$	5	sand and iron nodules		3	229	
Lignite		2		2	Red clay with some mottling an iron nodules		3	231	3
Dark-gray carbonaceous sandy clay		2	136	4	White and red mottled clay wit		U U		U
Lignite			136		iron nodules		7	232	10
Brown carbonaceous sandy clay		2	137	6	Red clay with some sand		2	234	
Lignite		_	138	6	Dark-red clay with iron nodules		-	235	
Brown sandy clay		5	139	11	·				
Lignite	- 4	1	144		Eocene (?) unnamed pre-lone beds				
White conglomeratic clay	_ 1		145		Transition to green unaltered cor				
Fine-grained white argillaceous					glomeratic material			235	
sandstone	_ 8	3	153	3	Green conglomeratic material	3	6	239	
Fine-grained white saudy clay	_ 0	9	154		Whitish-green conglomeratic			044	
Fine-grained white argillaceous					material			244	
sandstone	$_{-12}$		166		Buff sandy clay	2	6	246	0
White argillaceous medium-grainee	1				Olive-brown sandy clay, some	5	6	252	
sandstone with some buff stains	_ 3	**	169	3	pebbles eity elev			$\frac{252}{254}$	
Gray carbonaceous medium-graine	d				Grayish buff-brown silty clay	·		204	
sandstone		9	174		* No core, description from driller's log.				

200 feet N. of county road and 190 feet E. of Hart west property line. Elevation 321 feet.

		Thi	ckness	De	pth
G	luaternary terrace gravel	feet	inches		inches
	Sand and gravel *	15		15	
Ε	ocene lone formation				
	Upper lone member				
	White to gray-green clay *	52		67	
	Lower lone member (?)				
		8		75	
	Sand * Clay *	- 3		78	
	Clay	Ŭ		.0	
	Lower lone member				
	Lignite *	11		89	
	Clay, sandy clay, and silt *	27		116	
	Clay, silt, and gravel beds *	18		134	
	Brown ironstone, extremely hard; many quartz grains *	9		143	
	Rust-colored medium-grained sand-	U		110	
	stone cemented with iron oxide				
	and clay	20		163	
	Coarse-grained sandstone with heavy				
	iron-oxide cement	2	8	165	8
	White clay with some silt	2	1	167	9
	White clay with a few sand grains;	2	0	170	
	heavy yellow stain	22	3	$\frac{170}{172}$	
	Buff silty clay with purple stain Light-buff silty clay with red stains		6	172	6
	Red and white clay	6	6	180	0
			0	183	
	Very light buff clay with red stains Light-buff clay with red stains	1		184	
	Light-buff clay with sand grains, red				
	stains	1		185	
	Red, white, and buff mottled clay	2	1	187	1
	Light-buff clay with sand grains, red	0	11	188	
	stains Light-buff clay with red and dark		11	100	
	buff strains		1	190	1
	Very light-buff sandstone, very little				
	clay cement		4	196	5
	White clay		5	197	9
	Sand parting		1	197	10
	White day	2	2	200	
	Light-buff clay with some sand grains	1	6	201	6
	Light-buff argillaceous sandstone		6	202	, Y
	White silty clay	1		203	
	Cream-colored silty clay		9	203	9
	Cream-colored fine-grained sandy				_
	clay	1	6	205	3
	Cream-colored coarse-grained sandy		r.	206	8
	clay Cream-colored clay		57	200	3
	Cream-colored clay with red stain	ŏ	9	208	0
	Cream-colored clay with sand grains				
	and red stain	0	5	208	5
	Light-buff sandstone with clay ce-				
	ment and red stains	0	7	209	
	Fine-grained white argillaceous	90	5	229	5
	sandstone	20	5	22:)	5

	Thi	ckness	D	epth
j	feet	inches	feet	inches
Lignite with sand parting at 229' 10"	0	9	230	2
Gray medium-grained sand with lig-				_
nite seams at 231' 2" and 231' 5"	3	-4	233	6
Light-gray argillaceous siltstone	2	6	236	
Fine-grained dark-gray carbona-				
ceous argillaceous sandstone	8		244	
Lignite and dark-gray clay				
alternating	3	9	247	9
Gray argillaceous sandstone alter-	0			
nating with lignite seams	0	9	248	6
Gray medium-grained sandstone	0		0.50	0
with yellow stain	2		250	6
Fine-grained gray standstone with lignite as thin partings	3	6	074	
Fine-grained gray carbonaceous	0	0	254	
sandstone	4		258	
Dark-gray carbonaceous sandy clay	6		$\frac{238}{264}$	
Dark-gray carbonaceous salty clay	U		ár Unt	
with numerous lignite partings	3	8	267	8
Highly carbonaceous sandy clay	0	0	-01	0
with lignite partings	6	4	274	
		-	2011	
Jurassic Mariposa slate				
Pinkish-stained clay grading to gray				
clay	- 3	6	277	6
Gray clay red-stained in places	1		278	6
Olive-colored clay with red stain	1	6	280	
Pinkish-clay with iron specks	-4		284	
Olive-colored clay	- 7	6	291	6
Olive-colored clay, some sand grains	1	6	293	
Pinkish clay, some sand	1		294	
Olive-colored clay, some sand	10		304	
• No core, description from driller's log.				

HOLE 18-4

50 feet E. of range line between R. 9 E. and R. 10 E. (projected); 240 feet N. of north side of sec. 19, T. 5 N., R. 10 E. Elevation 258 feet.

Thickness		D	epth
feet	inches	feet	inches
180		180	
14		194	
-4		198	
		0.01	
		204	
		010	
	10		10
1		211	10
1	11	213	9
0	6	214	3
	14 180 14 4 3 3 6 - 0 1 1 1	$ \begin{array}{c} \text{feet inches} \\ 180 \\ 14 \\ 4 \\ 3 \\ - 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

60 feet E. of Ringer west property line, 100 feet 8. of south boundary of Buena Vista Grant. Elevation 327 fect.

•	Thi	ckness	D	epth
Eocene lone formation	feet	inches	fect	inches
Upper lone member (?)				
Sand and gravel *	16		16	
Sand and elay *			90	
Lower lone member				
	-		0.7	
Lignite *	. 5		95	
Sand and clay *			119	
Lignite *			133	
Clay *			148	
Lignite *			154	
Clay *			175	
Sand and clay *			235	
Sand and pebbles, increasing in				
coarseness downward, Very coarse			007	
at 265′ *	. 30		265	
Eocene (?) unnamed pre-lone beds				
Gray medium-grained sandstone		9	265	9
with pebbles Fine-grained olive buff micaceous		19	200	ย
sandstone		3	270	
Buff sand with lenses of biotite	. +	U	$\frac{270}{275}$	
Sand and pebbles *			$-270 \\ -284$	
Glauconitic green sand grading			204	
downward into a gray plastic				
			314	
clay * Gray plastic clay *	- 00		325	
Green and brown dense siltstone	. 11		- a∡o 336	
Gray plastic clay *			390	
Gray plastic clay *	. 04		990	
Jurassic Amador group				
Greenstone	6		396	
	- 0		000	

* No core, description from driller's log.

HOLE 24-1

2810 feet S. 40° W. from hole 18-1. Approximately 95 feet W. of Hart east property line. Elevation 269 feet.

	Thickness			cpth
Eocene lone formation (?)	feet	inches	feet	inches
Upper lone member (?)				
Sand and gravel *	82		82	
Lower lone member (?)				
Red clay *	- 4	6	86	6
Jurassic Amador group (?)				
Bed rock *	. 1	6	88	

* No core, description from driller's log.

HOLE 24-2

Approximately 1660 feet S. 12° E., from the top of Chitwood Hill. Elevation 275 feet.

	Thickness			Depth		
Eocene lone formation (?)	feet	inches	feet	inches		
Upper lone member (?)						
Sand and gravel *	32		32			
Greenish silty clay *	12		44			
Pale-buff clay	1	6	45	6		

	Th	ickness	D	epth
		inches	feet	inches
Yellow-brown clay with some silt	2		47	6
Yellow-brown argillaceous s a n d		7	48	-
stone Olive-brown silty clay			40 53	1
Eocene lone formation				
Lower lone member				
Fine-grained gray argillaceous sand stone	. 1		54	
Gray medium-grained sandstone			04	
with clay cement			55	
Light-gray silty clay		-	55	6
Light gray clay with pieces of lignit		2 6	58	
Lignite) 8	58	8
Light-gray carbonaceous clay	- 4	-	62	8
Light-gray silty clay		l 4	64	
Light-gray argillaceous medium		<u>,</u>		
grained sandstone)	74	
Fine-grained light-gray argillaceou		-		
sandstone)	79	
Light-gray argillaceous medium grained sandstone		5	84	
Light-gray clay			84	2
Fine-grained light gray argillaceou		, 2	01	~
sandstone		3 10	88	
Fine-grained gray argillaceous sand				
stone)	97	
Light-gray carbonaceous clay with	h			
some silt	_ 1	1 8	- 98	8
Lignite) 2	98	10
Light-gray carbonaceous clay with				
little fine silt		$\frac{3}{2}$	102	
Light-gray carbonaceous clay		2	104	
Light-brown clay		4 4 8	104 109	4
Lignite Dark-brown clay		± 6) 5	109	5
Lignite		3	112	5
Brown clay		5 7	113	0
Lignite		1 3	114	3
Dark-brown clay		2	114	5
Lignite		4 6	118	11
Dark-brown carbonaceous clay	_	96	119	5
Light-brown clay		3 7	123	
Pale-brown sandy clay	_ (3	129	
Very light gray silty clay with iro		0	100	
specks		9) 2	138	
White sandy clay with iron nodule White sandy clay with red clay frag		8	146	
ments and iron nodules		2	148	
White clay with red stain and iro		-	110	
nodules		4	152	
White sandy clay with iron nodule		2	154	
White clay	_ 2	2	156	
White clay with some silt		2 6	158	6
Very light buff silty clay	_ (0 8	159	2
White clay with some silt		1 4	160	6
White clay with some silt and som			101	10
iron nodules		$egin{array}{ccc} 1 & 4 \ 2 & 2 \end{array}$	161	10
Very light buff silty clay White clay, conchoidal fracture		2 2 1	$\frac{164}{165}$	
White clay, concholdal fracture White clay with some silt		$\frac{1}{7}$ 2	$100 \\ 172$	2
white they with some site	-		112	-
Jurassic Amador group				
Altered greenstone	_ (0 7	172	9
Fresh greenstone		2 1	174	10

* No core, description from driller's log.

HOLE 24-3

50 feet W. of county road and 100 feet S. of Kidd north property line. Elevation 273 feet.

		Thick	eness	De	oth
E	ocene lone formation		nches	feet	
	Upper lone member				
	Light-buff sandy clay *			14	
	Red ferruginous conglomeratic sand-		0	-	0
	stone White, iron-stained, coarse sand-		9	14	9
	stone		9	15	6
	White, iron-stained, sandy clay,	0	Ũ		Č.
	sand grains becoming coarser and				
	more abundant after 19' 6"	5		20	6
	White, iron-stained, argillaceous sandstonc			21	6
	Greenish-tan silty clay with almost			~ 1	0
	no sand grains	0	7	22	1
	Ferruginous sandstone			23	1
	Olive-brown clay White, iron-stained, argillaceons		11	24	
	fine-grained sandstone			30	
	Light-brown silty clay	0	7	30	7
	Light olive-brown clay with some		_	45.1	0
1	silt	1	7	32	2
	Reddish-brown ferruginous sandy clay	1		33	9
	Dark-buff sandy elay		10	34	-
1	Finc-grained greenish argillaceous				
	sandstone with yellow stain			36	
	Fine-grained greenish argillaceous		~	43	7
	sandstoneGreenish mcdium-graincd sandstone		7	44	7
	Greenish coarse-grained angular		.,	••	
	sandstone, poorly cemented with				
	clay			50	
	Buff medium-grained sandstone with a little clay cement			54	
	Fragments of buff coarse-grained			072	
	sandstone with a little clay cement				
	(poor core recovery)	10		64	
	Buff medium-grained argillaceous			07	
	sandstone with yellow stains Buff clay with a few sand grains			67 69	
	Olive-buff clay with some sand			(),,)	
	grains	2	2	71	2
	Greenish-buff fine-grained argilla-		0		10
	ceous sandstone		$\frac{8}{2}$	$\frac{72}{74}$	10
	Clay with abundant sand grains Medium-grained argillaceons sand		~	1-1	
	stone		1	75	1
	Coarse-grained sandstone with				
	brown stain	. 1	3	76	4
	Gray-buff sandy clay	. 0	8	77	
	Coarse-grained sandstone with		10		10
	brown stain Gray-buff sandy clay with sand		10	77	10
	grains more abundant after 79' 3'		2	81	
	Sand and clay fragments (poor core		-	('L	
	recovery)	. 3		84	
	Dark-buff sandy clay	. 3		87	
	Dark-buff clay			88	
	Light-buff clay with small red areas		6	90	6
	Silty clay		6	91	
	Fine sandy clay Clayey sandstone			92	
	Buff clay with some silt	_ 1 _ 0	6	93 93	6
	and endy wren some succession.	- 0	0	00	0

	Thi	ckness	D e	epth
f	eet	inches		inches
Dark-buff medium-grained sandy				
clay	0	6	94	
Hard, gray, medium-grained sand-				
stone with buff stains	-0	4	94	4
Soft, dark-buff medium-grained	v	Î.	0 x	
sandstone	0	4	94	8
Dark-buff clay	ŏ	8	95	4
White clay	ĭ	6	96	10
White clay with sand grains	Ō	2	97	10
Greenish-gray sand with clay	0	-	01	
cement, grades from fine- to				
coarse-grained	7		104	
course granned			104	
Lower lone member				
Gray coarse-grained quartz sand-				
stone with clay grains that re-	0			
semble weathered feldspar grains	6		110	
Fine-grained white sand with buff				
stains and a few partings of				
coarse sand	-4		114	
Gray-brown carbonaceous clay	-3	5	117	5
Carbonaceous brown clay	0	1	117	6
Gray-brown carbonaceous clay	0	8	118	2
Lignite	- 0	S	118	10
Brown clay grading downward to				
white clay	5	2	124	
White clay with some sand grains	- 3		127	
White silty clay with some yellow				
stains	4	3	131	3
Light-brown clay	1	9	133	
White clay with some sand grains	3	-	136	
White clay	2		138	
White clay with iron nodules	- 5	7	141	7
White clay with a few large iron	0		1.11	•
nodules	2	5	144	
Reddish buff and gray mottled clay,	-	• •	111	
some iron nodules (reworked				
laterite)	3		147	
Red and white clay with specks of	.,		7.44	
iron oxides (reworked laterite)	10		4	
	10		157	
Red and white mottled elay with				
abundant iron nodules (reworked			1.40	
laterite)	11		168	
Red with some white areas (re-				
worked laterite)	6		174	
White clay mottled with some red				
clay (reworked laterite)	- 3	8	177	8
Red, gray, and cream clay (re-				
worked laterite)	- 0	5	178	1
Yellow and red clay	1	1	179	2
Brown clay	- 0	6	179	8
Red smooth clay with conchoidal				
fracture	- 0	5	180	1
Dark-buff and purple mottled clay	13	11	194	
Yellowish clay with red stain and				
white spots	10		204	
Red and white clay	10		214	
Claylike material with pebbles of	10		-1-X	
greenstone and quartz			220	
strensione and quartz	0		220	
Jurassic Amador group				
Grcenstone	2		222	
	ث ا		222	

* No core, description from driller's log.

SPECIAL REPORT 19

HOLE 24-4

140 feet W. of Churchman east property line and 380 feet N. of Churchman south property line. Elevation 290 feet.

fe	Thick eet i	ness nchcs	Dep fceti			Thici feet	kness inches	Dep feet i	
Miocene (?) Valley Springs formation Bright blue-green clays, silts, and					Light-buff argillaceous sandstone, coarser toward the base	4	3	252	
sands *1	00		100		Light-buff clay	2		254	
Eocene Ione formation (?)					Lower lone member				
Upper Ione member (?)					Purple-brown carbonaceous clay				
Green sand, silt, and siliceous clay					with some lignite		0	257	0
and some gravel beds *	26		126		Light gray clay Lignite with some clay		$\frac{6}{3}$	$\frac{257}{260}$	$\frac{6}{9}$
Olive-buff fine-grained sandstone					Gray clay ; some plant fragments		Ð	$\frac{260}{261}$	9
with some well-rounded pebbles	4	6	130	6	Light-gray clay		3	264	U
Olive-buff sandstone with a very few					Light-gray sandy clay		7	264	7
small pebbles, some pebbles weath-	0	0	191	9	Gray sandy clay with plant frag-				
ered to clay	$\frac{0}{3}$	8	$\frac{131}{134}$	$\frac{2}{2}$	ments	0	8	265	3
Olive-buff siltstone and some pebbles Conglomerate with buff silty matrix,	0 U		104	-	Lignite		3	265	6
dark-colored siliccous pebbles less					Light-gray clay	$\frac{1}{3}$	$\frac{4}{7}$	$\frac{266}{270}$	$\frac{10}{5}$
than 3" in diameter	6	10	141		Light-gray argillaceous sandstone Olive-brown sandy clay		3	$\frac{270}{270}$	8
Olive-buff fine-grained sandstone	-0	3	141	3	Light-gray argillaceous sandstone		3	273	11
Conglomerate with buff-colored silty					Brown carbonaceous clay		2	275	1
matrix, dark-colored siliceous peb-	0	0	4.40	0	Light-gray silty clay		8	278	9
bles	2	6	143	9	Brown carbonaceous clay with lig-		-	000	
Yellowish fine-grained sandstone with brown stains	1	3	145		nite partings	1	10	280	7 1
Cream-colored silty clay with buff	T	Ð	1.10		Black highly carbonaceous clay Light gray would clay		$\frac{6}{11}$	$\frac{281}{284}$	1
stains	4		149		Light-gray sandy clay Light-gray clay with coarse sand		6	$\frac{284}{288}$	6
Cream-colored silty clay with buff					Light-gray clay with iron nodules		v	200	v
stains and some pebbles	5		154		and sand			289	6
Light-brown conglomerate	-1		158		Light-gray sandy clay		2	290	8
Light-brown silty clay; color grades			100		Tan argillaceous medium-grained		0	000	
downward to brown	4		162		sandstone		3	293	11
Mixed fragments of olive-brown silt and clay	4		164		Lignite Brown medium-grained sandstone		2	295	1
Olive-colored silty clay			174		with clay cement		11	302	
Light olive-brown argillaceous sand-	1.07				Medium-grained brownish-gray ar-				
stone	8	6	182	6	gillaceous sandstone			305	
Conglomerate with olive-colored					Highly carbonaceous coarse-grained		_		
matrix	1	6	184		sandstone		6	305	6
Green-gray fine-grained argillaceous					No core		6	312	
sandstone with some black carbon- aceous matter	7		191		Brownish-gray medium-grained sandstone with much carboua-				
Green-gray silty clay	2	10	193	10	ceous material		7	313	7
Green-gray silty clay with sand	_				Dark-brown highly carbonaceous				
grains	-2	2	196		shale and lignite		8	314	3
Light olive-buff siltstone	8		204		Brownish-gray coarse-grained sand		0	01*	
Light olive-buff fine-grained sand-	0	0	0.07	0	stone with carbonaceous material Fragments of coarse-grained, pebbly		9	315	
stone	3	6	207	6	sandstone, dark carbonaceous clay.				
Gray-brown fine-grained argillaceous sandstonc	16	6	224		and sandstone (poor core recov-				
Light olive-gray fine-grained sandy	10	0	221		ery)			325	
clay	3	3	227	3	Brown carbonaceous clay	0	9	325	9
Light olive-gray fine-grained silty					Light-brown clay with some saud			0	
clay with finely disseminated					and many plant fragments		8	327	5
pyrite	3	9	231		Gray sandy clay with many plant		7	329	
Light olive-gray fine-grained silty	5	C	236	6	fragments Gray argillaceous sandstone with			020	
clay Olive-brown clay with some silt		$\frac{6}{6}$	$\frac{230}{239}$	0	plant fragments		8	330	8
Olive-brown finer-grained argilla-	-	0	2000		Light-gray conglomerate		4	331	
ceous sandstone	3	6	242	6	Light-gray argillaceous sandstone_		5	333	5
Olive-brown coarse-grained sand-					Light-gray argillaceous sandstone				
stone		6	243	0	with rust-brown stain		7	334	
Olive-colored fine-grained sandy clay	1	6	244	6	Medium-grained argillaceous sand			0.00	
Eocene Ione formation					stone	. 5		339	
Lower Ione member (?)					Jurassic Amador group				
Light buff argillaceous sandstone,					Green, gray; red, and yellow weath			9.1.1	
coarsest at top of bed		6	247		ered agglomerate; some pyrite	. ə		344	
Light-buff clay	0	9	247	9	* No core, description from driller's log.				

E

.

180 feet E. of eounty road and 80 feet S. of north side of sec. 24, T. 5 N., R. 9 E., Elevation 260 feet.

	Thickness			Depth		
Eccene lone formation	feet	inches	feet	inches		
Lower lone member						
Laterite (reworked) *	. 4		4			
Red and buff mottled clay (reworked						
laterite)			12			
Red, buff, and purple mottled clay (reworked laterite)	. 8		20			
Red and buff mottled clay (reworked laterite)	. 10		30			
Red clay with some mottling (re worked laterite)	. 10		40			
Red, yellow, and purple mottled clay with some sand grains (reworked laterite)	1		54			
Red and buff mottled clay (reworked laterite)	1		58			
Jurassic Amador group						
Red and buff mottled clay (laterite)	1 .5		- 63			
Fresh greenstone	_ 1		64			
* No core, description from driller's log.						

HOLE 24-6

30 feet W. of Churchman east property line, 158 feet 8. of Churchman north property line. Elevation 277 feet.

		Thi	ckness	D	epth
Qu	aternary soil	feet	inches	feet	inches
	Surface sand and gravel *	6		6	
Mi	ocene (?) Valley Springs formation				
	Green clays, silts, and sands *	57		63	
	Olive-brown fine-grained sandstone				
	with clay cement	21		- 84	
	Olive-brown coarse-grained saud-				
	stone with clay cement	1		85	
	Olive-brown conglomeratic fine-				
	grained sandstone			- 90	
	Olive-brown silty clay	- 7		97	
	Olive-buff silty clay			104	
	Light olive-buff silty clay with clay	,			
	fragments			108	

.

	Thiekness 7 1 1		D_{c}	cpth	
	feet	inches		inches	
Eocene lone formation (?)					
Upper lone member (?)					
Light-buff coarse-grained sandstone					
with some clay cement	1		109		
Greenish-buff coarse-grained sand-	1		100		
stone with much biotite	1	7	110	7	
Buff argillaceous fine-grained sand-	-		110	•	
stone	0	10	111	5	
Greenish-buff silty clay	4	7	116		
Light-greenish-white clay sand	1	6	117	6	
Light-olive-buff mixed sand and clay	2	5	119	11	
Light-olive-buff silty clay	1	3	121	-2	
Light-olive-buff sandy clay	2	10	124		
Grey biotitic sandstone with a little					
clay cement and disseminated					
pyrite	- 9	1	133	1	
Light-buff clay with disseminated					
pyrite	- 0	11	134		
Light-olive-buff silty clay with					
patches of disseminated pyrite			138		
Light-olive-buff sandy clay with oc-					
casional siliceous and clay pebbles.					
Patches of disseminated pyrite	6		144		
Olive-brown silty clay with biotite.	12		-156		
Light-brown silty clay	1	1	157	1	
Light-brownish-buff clay with biotite		11	-162		
Light-brown fine-grained sandy clay	2	6	164	6	
Fine-grained olive-buff argillaceous					
biotitic sandstone	2	3	-166	9	
Olive-buff conglomerate with clay					
and sand matrix. Weathered and					
siliceous pebbles up to 2" in diam-					
eter	- 7	n 	174		
Olive-brown conglomeratic clay	- ()	4	174	7	
Red and white mottled clay with oc-					
casional pebbles	. 0	0	174	10	
Olive-buff medium-grained sandstone					
with biotite	. 0	ī	175	5	
Clay-pebble conglomerate	. 0	6	175	11	
Lower lone member					
Red, white, and buff coarsely mot-	-				
tled clay (reworked laterite)	- 8	1	184		
Red and buff mottled clay (reworked	l				
laterite). A 1" pebble at 193'	. 10		194		
Red, white, and buff mottled clay	-				
(reworked laterite) =	5		199		
Red clay with small white patches	:				
(reworked laterite), $\Lambda 1\frac{1}{2}$ water					
worn pebble at 214'	. 22		221		
lurancia Amadan arawa					
Jurassic Amador group				0	
Highly weathered greenstone		6	221	6	
Fresh greenstone	- 0	6	222		
* No core description from drillor's log					

* No core, description from driller's log.

HOLE 24-7

Approximately 50 feet W, of county road and 1400 feet S, of hole 24-3. Elevation 300 feet.

Quaternary terrace gravel		ekness inches		pth inches
Gravel with boulders *	8		8	
Miocene (?) Valley Springs formation	-		1 7	
Yellow clayey silt * Gray siliceous clay *	$\frac{7}{10}$		$\frac{15}{25}$	
Eocene lone formation (?)				
Upper Ione member (?)				
Buff siliceous clay *			$\frac{35}{45}$	
Buff clay * Greenish-gray clay and silt *	10		55	
Gray sandy silt * Greenish silty clay *	$\frac{10}{10}$		65 75	
Greenish-gray silt grading down-				
ward into sand * Clay and sand *	$\frac{20}{98}$		$\frac{95}{193}$	
Lower lone member				
Lignite *	6		199	
Clay * Gray medium-grained micaceous	16		215	
sandstone with carbonized plant				
fragments Gray clay with carbonaceous mate-			225	
rial	2		227	
Lignite Gray clay with carbonaceous mate-	1	2	228	2
rial	1	11	230	1
Light gray fine-grained sandstone Light-gray argillaceous medium-	2	11	233	
grained sandstone	3		236	
Light-gray medium-grained sand- stone with some clay			240	
Light-gray argillaceous medium- grained sandstone			241	
Light-gray medium-grained sand-	I			
stone with some elay Light-gray clay with red stains and	1	5	242	5
some sand	0	7	243	
Light-buff clay with red and purple spots (weathered conglomerate)_	-1	10	247	10
Light-buff coarse-grained argilla- ccous sandstone with some red				
stain	2	1	249	11
White medium-grained argillaceous sandstone with some red stains	2	1	252	
White sandy clay	3	1	255	
Brown silty clay with white and yel- low areas		5	255	5
No core	5	7	261	
White sandy clay Greenish-gray clay with coarse sand	1	2	262	2
grains White clay with coarse sand grains	- 2	$rac{4}{6}$	$\frac{264}{265}$	6
Brown clay	1	5	$266 \\ 266$	5
Green-browu conglomerate with clay matrix		1	268	6
Chalky white conglomerate and clay				
mixture Brown clay with some red stain	1	$\frac{6}{10}$	$\frac{271}{272}$	10
Gray argillaceous sandstone Yellow-brown clay	. 1 0	215	274	~
Coarse-grained angular quartzose		Ð	274	5
sandstone with red cementing min- eral		3	274	8
Red and yellow brown silty clay	0	-4	275	
Gray weathered conglomerate Olive buff silty clay with iron		4	275	4
nodules, fewer iron nodules below		e	11/10	
277' 7". White sandy clay with red and yel-		6	280	
low stains and a few iron nodules White sandy clay with red stains	s 0	8 5	$\frac{280}{283}$	8 1
the same cay wented status	-	.)	200	I

	Thickness		D	cpth
	fect	inches	feet	inches
Purple, red, and buff mottled clay	7			
(reworked (?) laterite)	. 1	11	285	
Red-buff clay (reworked (?) late-	-			
rite)	. 4		289	
Jurassic Amador group				
Greenstone	. 1		290	

.

* No core, description from driller's log.

HOLE 24-8

900 feet due 8. of Hole 24-2. Elevation 273 feet.

	Thickness		Depth	
Eocene Ione formation	fcet	inches	feet	inches
Upper lone member				
Green sands and clay *	$_{235}$		235	
Buff clay	_ 0	10	235	10
Gray clay	_ 0	11	236	9
Gray clayey silt with biotite	4	2	240	11
No core	_ 1	6	242	5
Jurassic Amador group				
Fresh greenstone	_ 0	7	243	

* No core, description from driller's log.

HOLE 24-9

50 feet W, of Hart east property line, 1050 feet N, of Hart south property line, and 1000 feet S, of hole 24-1. Elevation 273 feet.

		ckness –		epth
Eocene lone formation	fect	inches	feet	inches
Upper lone member				
Sand *	-96		26	
Green clay *	10		45	
oreen day	. 10		10	
Lower Ione member				
Gray clay gradually becoming lighter	r			
in color *	_ 30_		75	
Gray clay *	6		81	
White clay with some saud and buf				
stains, (Pebble bed at 81' 4".)	. 4		85	
White clay with some sand and rec				
stains			89	
Red and white banded clay with	 1			
some silt			91	
Pink and white silty clay		10	91	10
Piuk silty clay with red spots		7	95	5
Pink sandy clay		$\frac{1}{7}$	97	0
White argillaceous siltstone with		•		
irou nodules			98	
White argillaceous fine-grained sand		•	00	
stone			101	
Buff argillaceous fine-grained sand			101	
	1		102	
stone			10-	
		1	108	1
some yellow staius		10	$108 \\ 108$	11
Buff argillaceous siltstone	- 0	10	100	11
White argillaccous fine-grained	2	1	111	
sandstone		1	$\frac{111}{112}$	
Pinkish buff clay				
Banded red, yellow, and white clay		~	115	-
Reddish clay		5	117	5
Red and white sandy clay		3	118	8
Yellowish argillaceous saudstone		10	120	6
Yellow argillaccous saudstone with			101	
irou uodules		6	121	
Pink silty clay with white spots	. 1		122	
Jurassic Amador group				
Pink to red gritty clay (residual)	- 9		124	
Green gritty clay (residual)			125	
Weathered greeustone		2	125	2
Fresh greenstone		10	127	-
		1.0		
* No sons dougnintian from dvillar's lar				

* No core, description from driller's log.

Ε

HOLE B.V. 1

Approximately 900 feet S. 73° W. of the power plant at the Bucna Vista wax plant. Elevation 362 feet.

		Thi	ckness	D	epth
R	ecent soil	feet	inches	feet	inches
	Red soil with cobbles	$\frac{2}{2}$		2	
E	ocene lone formation				
	Upper lone member				
	Pale-green clay	13	6	15	6
	Gray to greenish-gray loose sand	- 8		23	6
	Yellowish-gray sand	1		24	6
	Gray-white sand	-2		-26	6
	Buff sand	1	6	28	
	Greenish-gray clayey sand	- 8		- 36	
	Greenish-gray clay	-4		-40	
	Greenish-gray clayey sand	4		-4-4	
	Light-gray loose sand	15		- 59	
	Tan coarse-grained loose sand	-2		61	
	Buff coarse-grained loose sand	- 0	6	-61	6
	Tan clayey sand	2	6	64	
	Blue-gray clayey sand	1		65	

HOLE B.V. 2

On top of small hill approximately 1800 feet 8,75° W. of the power plant at the Buena Vista wax plant, Elevation 392 feet.

		Thi	ckness	D_{i}	epth
Ec	cene lone formation	feet	inches	feet	inches
	Upper lone member				
	Not cored but included gray silt-				
	stone, chocolate-colored elay, and	1			
	some buff-stained white sand	. 44	6	-44	6
	Tan to white clayey sand	. 4	11	-49	5
	Loose grayish sand	. 6	7	56	
	Grayish white clayey sand	. 3		59	
	Loose grayish sand	. 6		65	
	Grayish-white elayey sand	. 1		66	
	Loose grayish sand	. 4		-70	
	Tan sand with some elay	. 7		77	
	Tan sand with pebbles and some clay	1		78	
	Buff sandy clay to clay	. 2		80	

HOLE B.V. 3

On crest of ridge about 900 feet S. 33° W, of the power plant at the Buena Vista wax plant. Elevation 420 feet.

		Thi	ckness	De	pth
Ε	ocene lone formation	feet	inches	feet	inches
	Upper lone member				
	Buff, brown, and tan clays and sands Buff, greenish-tan, and lavender	20		20	
	clays and sands			70	
	Ferruginous sand			71	
	Light-gray sand with some pebbles			100	
	Light-gray quartz conglomerate			101	
	Greenish-gray elay	-9-		110	

HOLE B.V. 4-A

On top of small hill about 2400 feet W, of the power plant at the Buena Vista wax plant, Elevation 341 feet.

Ε	ocene lone formation	Approximate thickness	
	Upper lone member	feet inches	feet inches
	Grayish-white sand	30	30
	Brown sand	1	31
	Buff to greenish silty clay	39	70

HOLE B.V. 4-B

On crest of ridge about 650 feet 8, 7° W, of the power plant at the Buena Vista wax plant, Elevation 380 feet.

Quaternary terrace gravel feet inches feet inche Brown conglomerate, large cobbles5 5 5 5	8
Brown conglomerate, large cobbles 5 5	
Eocene lone formation	
Upper lone member	
Greenish-buff sandy clay 3 10 8 10	
Light-gray sand 11 2 20	
Limonite-stained sand 0 6 20 6	
Light greenish-gray sand 9 29 6	
Greenish-gray to greenish-buff clay_ 10 6 40	
Light greenish-gray sand with some	
clay 6 46	
Light grayish-tan sand 3 49	
Light gray quartz conglomerate with	
pebbles less than 1 inch in diam-	
eter 2 51	
Hard limonite-rich streak 0 2 51 2	
Greenish-gray clay 7 3 58 5	
Greenish-brown elay 1 1 59 6	
Gray-green clay 4 6 64	
Greenish-gray clay with rust-colored	
stains 2 66	

HOLE B.V. 5

In low saddle on erest of same ridge as Hole B.V. 1 about 1500 feet S. 53° W. of the power house at the Bnena Vista wax plant. Elevation 417 feet.

ocene lone formation	Thi	ckness	,D	epth
Upper lone member	feet	inches	feet	inehes
Buff, greenish-buff, and brown sand	1			
and silt	19	-4	19	4
Greenish-white sand	. 5	8	25	
Buff-brown elayey sand	3		28	
Buff, brown, and light-gray elay				
with some sand lenses	6		- 34	
Light-brown clay	. 3		37	
Brown clay			- 38	
Light blue-gray clay	. 4		42	
Hard light-brown sandy elay		6	-43	6
Hard light-gray sandy elay		6	46	
White clayey sand	. 4		50	
Buff sand	. 0	3	50	3
White clayey sand	. 4	5	54	8
White sand		4	- 66	
Fine-grained conglomerate with	l			
many black pebbles and white				
sand matrix	14	9	80	9
Tan sandy clay with limonite con-				
cretions, a lense of fine-grained				
conglomerate at about 83 fect		3	85	
Buff and tan sandy clay grading to	i i i			
greenish color toward the base			98	
Light gray-green clay			100	
Gray-green clay	2	8	102	8

HOLE K-10

At present site of Kaolin-Fye clay pit about 125 feet northeast of Calaveras Coment Company southwest property line and 250 feet northwest of stream. Elevation 358 feet.

Quaternary terrace gravel	Thi	ckness	D	epth
and alluvium	feet	inches	feet	inches
Coarse reddish-brown conglomerat	te 10		10	
Eocene lone formation				
Lower lone member				
White clayey sand stained yellow fo				_
about 2 feet at bottom	22	6	32	6
Dark-gray clayey sand and lignite	0.0	(1		

below 32

6

HOLE K-11

About 150 feet E. of K-10. Elevation 345 feet.

HOLE K-12

About 300 feet E. of K-10. Elevation 360 feet.

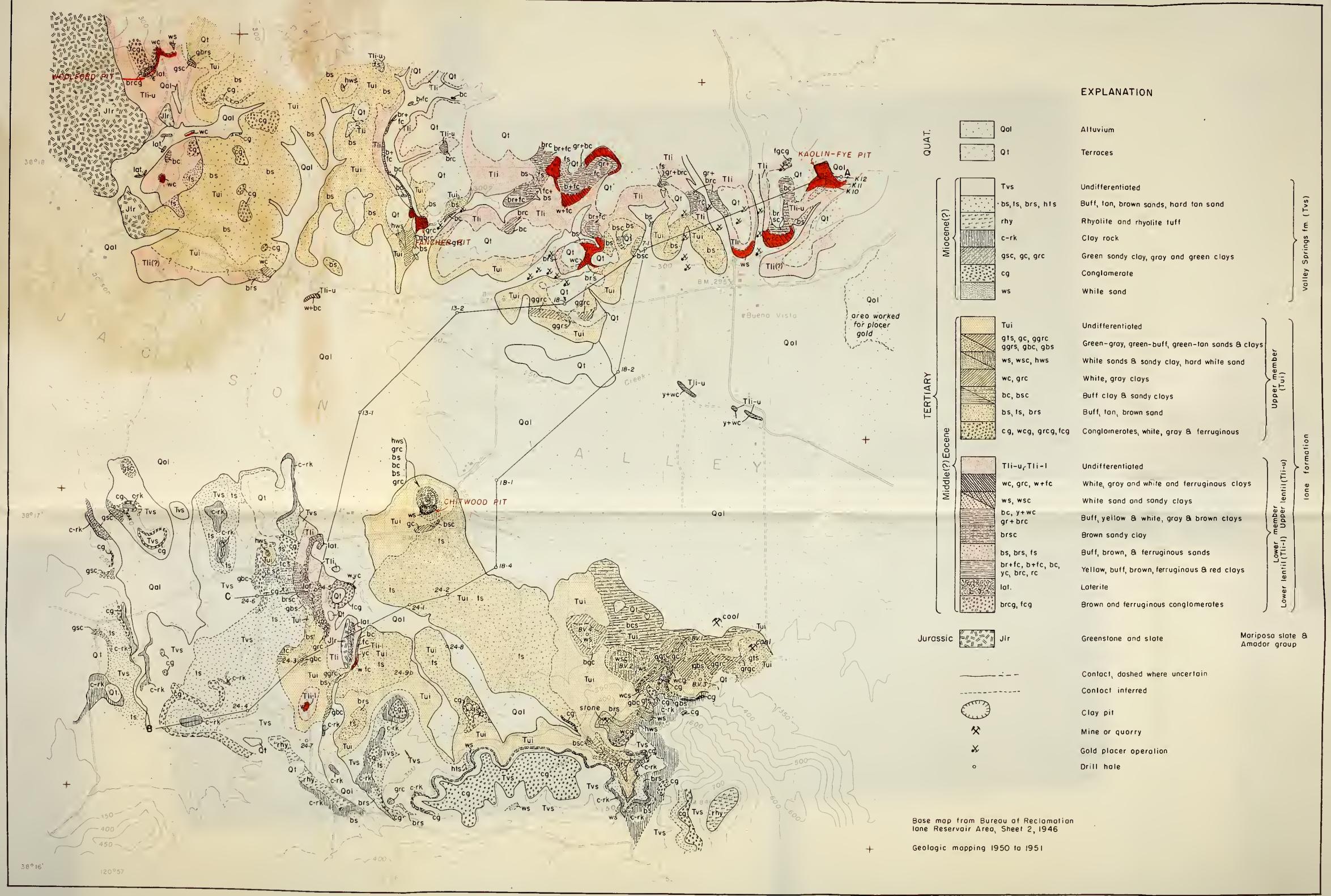
below 34

Eocene lone formation Lower lone member White clayey sand with yellow stain for about 2 feet at bottom		Depth fect inches 25	Quaternary terrace gravel and alluvium Reddish-brown conglomerate Eocene lone formation	Thickness feet inches _ 18	Depth feet inches 18
Dark-gray clayey sand and lignite below	7 25		Lower lone normation White clayey sand, stained yellow for about 2 feet at bottom Dark-gray clayey sand and lignite		34

Chemical analyses *

* Analyses released for publication on condition that name of analyst remain confidential.

	A	Hole	Duthin			Ana	lysis			
Formation	Analysis number	num- ber	Depth in feet	Al ₂ O ₃	Fe2O3	SiO2	TiO2	Loss on ignition	Free SiO2	. Lithologic description
Greenstone"	7-1-0 24-1A	7-1 24-1	263-264 88	33.30 20.80	11.60 17.00	45.80 39.00	.79 .84	8.51 8.1	1.29	Highly altered greenstone. Greenstone.
Pre-Ione Eocene (?) sediment	7-1-M	7-1	232-233	24.93	5.00	61.88	1.02	7.17	6.57	Gray argillaceous siltstone. (235'-235' 3'' Gray argillaceous siltstone.)235' 3''- 235' 9'' Dark-gray carbonaceous argilla-
64	7-1-N	7-1	235-236	27.43	3.55	59.51	1.10	8.41	2.74	coous siltstone. 235' 9''-236' Very light-brown argillaceous siltstone
64	18-1-L1	18-1	311-313	22.58	5.45	65.91	.34	5.72	2:76	Reddish-buff silty clay with some pebbles.
44	18-1-01	18-1	373-374	24.34	3.80	65.37	. 47	6.02	4.26	Greenish-white sandy clay with yellow stains.
66	18-2-F	18-2	253 - 254	26.18	7.15	55.71	1.18	9.78	4.91	Buff-brown silty clay.
Ione formation, Lower Ione										
member	7-1-A	7-1	35-36	23.37	1.80	64.99	1.81	8.03	3.34	Pale-brown clay with yellow stains.
"	7-1-B	7-1	41-42	24.26	1.75	63.90	1.66	8.43	1.92	Pale-brown clay with yellow stains.
**	7–1–D 7–1–E	7-1 7-1	139-140 215-216	$\begin{array}{r} 28.17 \\ 27.34 \end{array}$	6.00 7.90	$56.15 \\ 52.09$	1.22	$8.46 \\ 11.51$	$3.90 \\ 4.42$	Red and buff clay with pebbles. Buff silty clay with siderite nodules.
"	7-1-E 7-1-F	7-1	215-216 220-221	27.34	13.40	48.34	1.10	13.03	3.11	Light-buff and red mottled sandy clay.
"	7-1-G	7-1	222-223	25.97	10.80	51.51	1.14	10.58	5.36	Red sandy clay, some buff mottling.
66	7-1-H	7-1	224-225	25.77	14.55	46.35	1.26	12.07	5.41	Red sandy clay, some buff mottling.
66	7-1-J	7-1	226-227	24.45	21.30	38.41	1.22	14.62	1.68	Red sandy clay, some buff mottling.
44	7-1-K	7-1	228-229	27.79	12.35	47.04	1.20	11.62	.91	Red and buff mottled clay.
66	7-1-L	7-1	230-231	29.54	5.15	55.01	1.22	9.08	3.16	Buff clay.
"	13-2-A	13-2	169 - 169.5	31.95	18.55	34.52	2.45	12.53		Buff to red clay with a little sand.
66 64	18-1-A	18-1	276-277	27.48	6.40	56.86	.85	8.41	3.95	Red sandy clay with buff spots.
"	18-1-B 18-1-C	18-1	277-278	29.62	6.70	55.13	.79	7.76	9.10	Red sandy clay with buff spots.
16	18-1-U 18-1-D	18-1 18-1	278-279 279-280	$24.73 \\ 29.30$	$4.10 \\ 5.40$	64.64 57.86	.67 .64	5.86 6.80	8.42 11.10	Red sandy clay with buff spots. Red sandy clay with buff spots.
и	18-1-E	18-1	280-281	29.30	6.10	58.09	.67	7.94	6.10	280'-280'-5'' Red sandy clay with buff spots. 280'-5''-281' Red and buff clay with some silt.
66	18-1-F	18-1	281-282	27.55	7.15	56.29	.67	8.34	6.21	Red and buff clay with some silt.
66	18-1-G	18-1	282-283	26.54	7.40	56.49	.75	8.82	4.73	Red and buff clay with some silt.
44	18-1-H	18-1	283-284	29.09	6,50	55.82	.64	7.95	6.93	Red and buff clay with some silt.
4	18-1-J	18-1	284-285	30.15	5.05	57.78	. 53	6.49	11.93	Red and buff clay with some silt.
44	18-1-K	18-1	285-286	24.62	9.05	57.57	.83	7.93	3.45	Red, yellow, and white mottled sandy clay.
"	18-1-L 18-1-M	18-1	286-287 287-288	$25.42 \\ 26.27$	$6.70 \\ 5.70$	$59.51 \\ 59.85$.67	7.70	4.14 5.74	Red, ycllow, and white mottled sandy clay. Red, yellow, and white mottled sandy clay.
и	18-1-N 18-1-N	18-1 18-1	287-288	26.95	7.70	55.92	. 53	8.90	7.96	288'-288' 2'' Red, yellow, and white motifed sandy clay. 288' 2''-289' White sandy clay with yellow stains
46	18-1-0	18-1	289-290	26.06	5.35	60.63	. 45	7.51	5.23	and iron nodules. White sandy clay with yellow stains and iron nodules.
**	18-1-P	18-1	290-291	21.32	9.75	61.56	.60	6.77	4.16	Dark-yellow sandy clay with red and white areas.
и	18-1-Q	18-1	290-291	23.69	10.70	57.70	.64	7.27	5.06	Dark-yellow sandy clay with red and white areas.
46	18-1-R	18-1	292-293	24.62	9.45	58.47	.60	6.86	6.64	Dark-yellow sandy clay with red and white areas.
"	18-1-S	18-1	293-294	25.66	6.95	59.15	. 56	7.68	5.54	Dark-ycllow sandy clay with red and white areas.
**	18~1-T	18-1	294-295	27.79	3.30	63.03	.49	5.39	11.97	Yellow and white argillaceous siltstone.
44	18-1-U	18-1	295-296	26.53	1.70	64.96	. 53	6.28	7.75	Weathcred conglomerate; various colored pebbles in pink to brown matrix.
"	18-1-V	18-1	296-297	27.81	1.25	64.18	. 51	6.25	8.61	Weathered conglomerate; various colored pebbles in pink to brown matrix.
"	18-1-W	18-1	297-298	29.96	2.05	58.99	. 51	8.49	5.23	Weathered conglomerate; various colored pebbles in pink to white matrix.
"	18-1-X	18-1	298-299	30.83	2.65	56,75	.89	8.88	5.55	Weathered conglomerate; various colored pebbles in white matrix.
"	18-1-Y	18-1	299-300	30.20	2.15	58.31	.73	8.61	5.10	Weathered conglomerate; various colored pebbles in white matrix.
	18-1-Z	18-1	300-301	31.47	1.60	58.28	.71	7.94	8.77	Weathered conglomerate; various colored pebbles in white matrix.

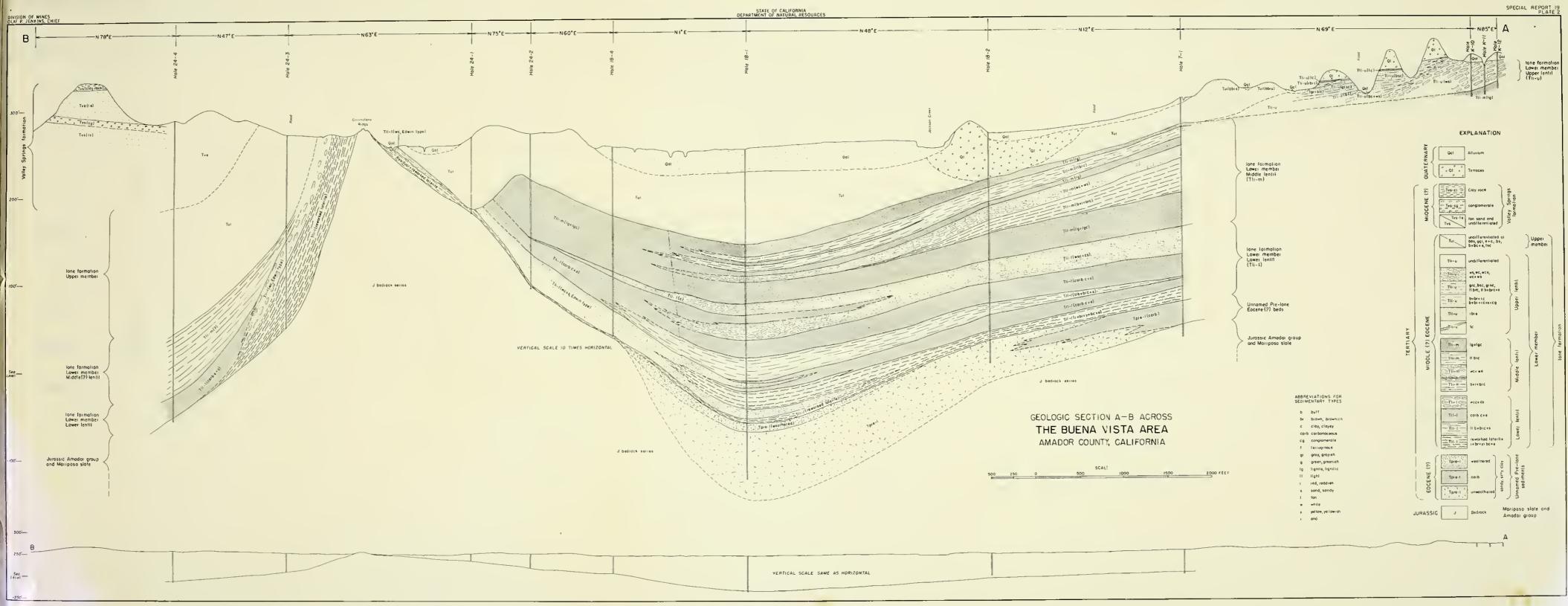

Chemical analyses	*-continued
-------------------	-------------

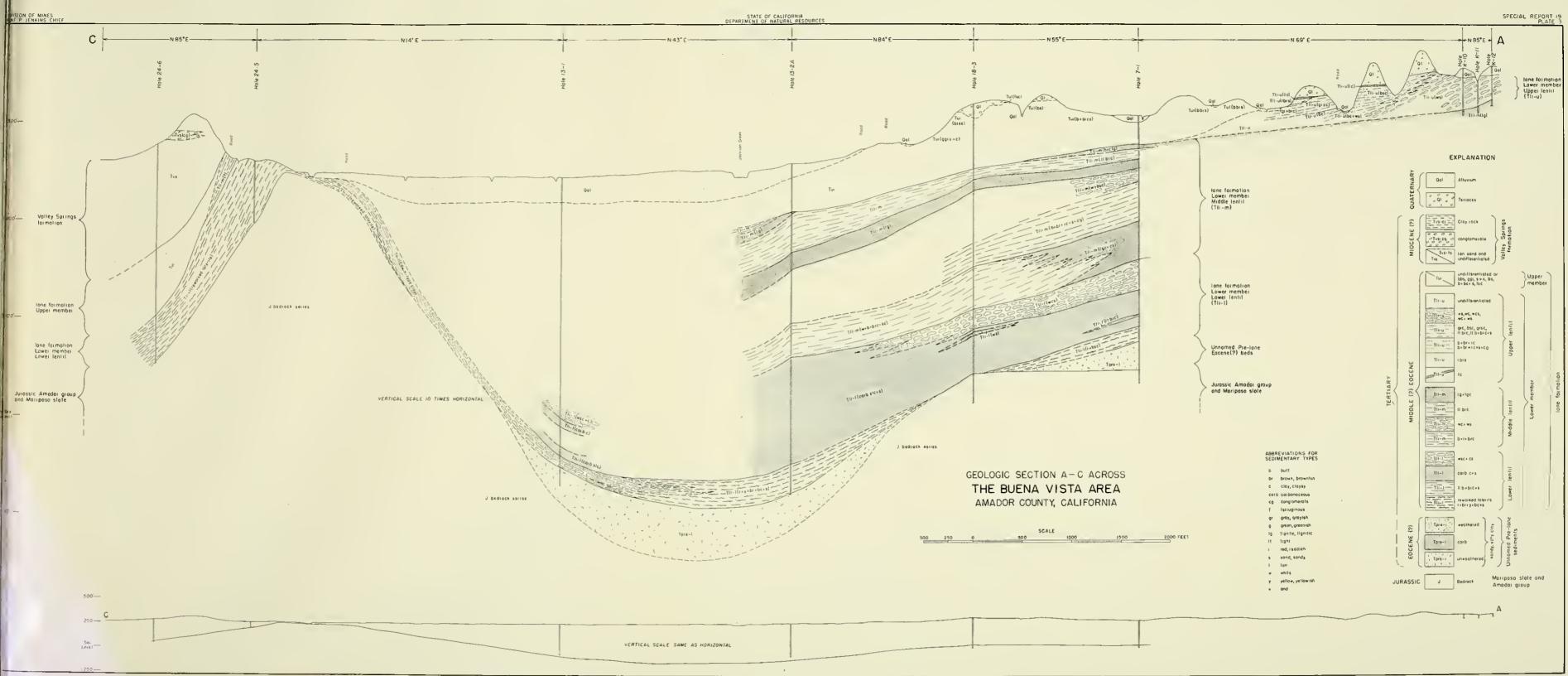
	Anchari	Hole	Donth			Ana	dysis			
Formation	Analysis number	num- ber	Depth in feet	Al ₂ O ₃	Fe ₂ O ₃	SiO2	TiO2	Loss on ignition	Free SiO2	Lithologic description
ower Ione member—eont.	18-1-A1	18-1	301-302	26.44	1.25	65.03	.51	6.77	6.04	Weathered conglomerate; various colored pebble in white matrix.
61	18-1-B1	18-1	302-303	26.50	1.20	64.49	. 58	7.23	5.96	White conglomerate with spots of earbonaceou material.
41 43 66	18-1-C1 18-1-D1 18-1-E1	18-1 18-1 18-1	303-304 304-305 305-306	$25.54 \\ 24.91 \\ 26.52$	$1.40 \\ 1.40 \\ 3.90$	66.07 66.89 62.45	. 53 . 44 . 51	$\begin{array}{c} 6.46 \\ 6.36 \\ 6.62 \end{array}$	$6.49 \\ 5.66 \\ 6.22$	 White elay with sand grains, some pale-green area White elay with sand grains, some pale-green area 305'-305' 3'' White clay with sand grains, som pale green areas. 305' 3''-306' Deep red elay with quartz pebbles, white patches.
66 66	18-1-F1 18-1-G1	18-1 18-1	306-307 307-308	$\frac{23.72}{23.06}$	$\frac{4.95}{4.70}$	$64.58 \\ 65.91$. 56 . 56	$\begin{array}{c} 6.19 \\ 5.77 \end{array}$	$5.55 \\ 4.35$	Deep red clay with quartz pebbles, white patche Deep red elay with quartz pebbles, white patche
66	18-1-111	18-1	308-309	24.23	4.65	65.15	.58	5.39	6.95	Deep red clay with quartz pebbles, white patche
44 66	18 1 J1 18-1-K1	18-1 18-1	309-310 310-311	$22.28 \\ 23.31$	4.30 4.50	$67.65 \\ 66.03$. 49 . 34	$5.28 \\ 5.82$	5.57 4.28	Deep red clay with quartz pebbles, white patche Deep red clay with quartz pebbles, white patche
4	18-1-M1	18-1	154 - 155	36.06	2.60	45.77	2.05	13.52		Light-gray clay.
64	18-1-N1 18-2-A	$ 18-1 \\ 18-2 $	187 - 188 228 - 229	$\frac{28.93}{25.76}$	$\frac{8.75}{14.25}$	47.67 47.37	$\begin{array}{c}1.72\\1.18\end{array}$	$\frac{12.93}{11.44}$	2.23	Cream colored elay with siderite pellets. Red and buff mottled elay with some sand and ire
"	18-2 B	18 2	234 - 235	23.19	18.50	45.58	1.24	11.49	1.89	nodules. Dark-red clay with iron nodules.
46	24-2-A	24-2	$164 \ 165$	31.52	1.60	54.81	. 42	11.65		White elay, conchoidal fracture.
64	24-2-B 24-3-A	24-2 24-3	167-168 124-125	22.63 38.83	$\frac{3.75}{1.60}$	$64.40 \\ 43.34$	$.91 \\ 2.71$	$\frac{8.31}{13.52}$	1.35	White clay with some silt. White clay with some sand grains.
64	24-3-B	24 -3	129-130	39-05	1.90	42.70	2.54	13 81	1.21	White silty clay with some yellow stam.
**	24-3-C	24 3	144-145	34.85	10.45	37.31	2.59	14.80	1.02	Reddish buff and gray mottled clay, some in nodules (siderite?) (reworked laterite).
e4	24-3 D	24_3	145-146	32.90	13.85	35.31	2.57	15.37		Reddish-buff and gray mottled clay, some ir nodules (siderite?) (reworked laterite).
46	24-3 E 24-3 F	24-3 24-3	156-157 159-160	32.66 27.60	14.95 27.85	35.15 27.46	3.03 2.45	14.21 14.64		Red and white mottled clay with specks of ir oxides. (reworked laterite). Red and white mottled clay with abundant ir
46	24 3 G	24-3	174 175	32.98	14.70	39.76	1.62	10.94	4.25	nodules (siderite?) (reworked laterite). White clay with some red clay, mottled, (rework-
46	24-3-11	24-3	178-179	30.16	18.75	37 82	1.95	11.32	. 85	laterite). Yellow and red clay (reworked laterite).
66	24-3-J	24 - 3	180-181	27.80	19-30	40.86	1.45	10.59		Dark buff and purple mottled clay (reworke laterite).
e6	24-3-K	24-3	202-203	27.28	21.10	38.11	1 38	12.10		Yellowish claylike material with red stain, whi spots. (reworked laterite).
	24 3 L 24 5 A	$ \begin{array}{cccc} 24 & 3 \\ 24 & 5 \end{array} $	210 211 5-6	$\frac{26.88}{28.05}$	$ \begin{array}{c} 20.20 \\ 24.05 \end{array} $	40.08 33.05	$\frac{1.38}{2.19}$	$ 11 46 \\ 12 66 $. 64	Red and white claylike material (reworked laterit Red and buff mottled clay (reworked laterite).
ed 46	24-5-B 24-5=C	$ \begin{array}{c} 24 & 5 \\ 24 & 5 \end{array} $	10-11 15-16	31.23 32.05	17.85	36.00	$2.10 \\ 2.00 \\ 1.66$	12.92 13.92	. 0 2	Red and buff mottled clay (reworked laterite). Red, buff, and purple mottled clay (rework
u	94.5.1	94.5	00-01	94.07	11.02	20.10	0.0	10 70		laterite).
"	24~5-D 24 5 E	$\frac{24-5}{24-5}$	20-21 31-32	34.97 31.67	$\frac{11.25}{17.50}$	$\frac{39.10}{35.93}$.98 1.60	$\begin{array}{c}13.70\\13.30\end{array}$.64	 Red and buff mottled elay (reworked laterite). Red clay with some mottling (reworked laterite
u	24-5 F	24 5	40 41	29.39	21.75	34.95	1.51	12.40		Red, yellow, and purple mottled clay with sor sand grains (reworked laterite).
u	24 -5 ·G	24 5	45-46	28.71	12.45	46.56	1.12	11.16	. 63	Red, yellow, and purple mottled clay with son sand grains. (reworked laterite).
	24-6-C	24 6	176-177	28.00	21.80	36.13	2.37	11.70		Red, white, and buff coarsely mottled elay (r worked laterite).
16	24 6 1)	24 6	178 179	28.73	22.75	34.68	2.45	11.39		Red, white, and buff coarsely mottled clay (a worked laterite).
"	24-6-E 24-6-F	24-6 24-6	180-181 182-183	30.14 23.91	17.55 25.75	36.98 32.18	1.81	13.52 16.54		Red, white, and buff coarsely mottled clay (r worked laterite). Red, white, and buff coarsely mottled clay (r
а	24-0-F 24-6 G	24-0	184-194	25.31	26.30	32.18	2.42	14.70		worked laterite). Red and buff mottled clay (reworked laterite).
**	24-6-11	24 6	196 197	30.53	17.50	37.12	1.38	13.47		Red, white, and buff mottled elay (reworked laterite).
66	24 6 J	24 6	199-200	29.72	19.10	37.39	1.54	12.25	-	Red clay with small white patches (reworke laterite).
"	24 6= K	24 6	201-202	27.44	23.75	34.92	2.19	11.70		Red clay with small white patches (reworke laterite).
	24 6 L	24-6	204 214	30.10	16.20	39.88	1.84	11.98		Red clay with small white patches (reworke laterite).
" (?)	24-6-M	24 6	218 219	27.55	20.65	37.85	2.12	11.83		Red clay with small white patches (reworked or residual laterite).
oper lone member (?) " (?)	24 -6 - A 24 -6 - B	$\begin{array}{c} 24 & 6 \\ 24 & 6 \end{array}$	114 - 115 157 - 158	$29.49 \\ 29.10$	3.75 10.15	56.76 51.53	. 85 1.20	9.15 8.02		Greenish-buff silty clay. Light brownish-buff elay with biotite.

Analyses released for publication on condition that name of analyst remain confidential.

.

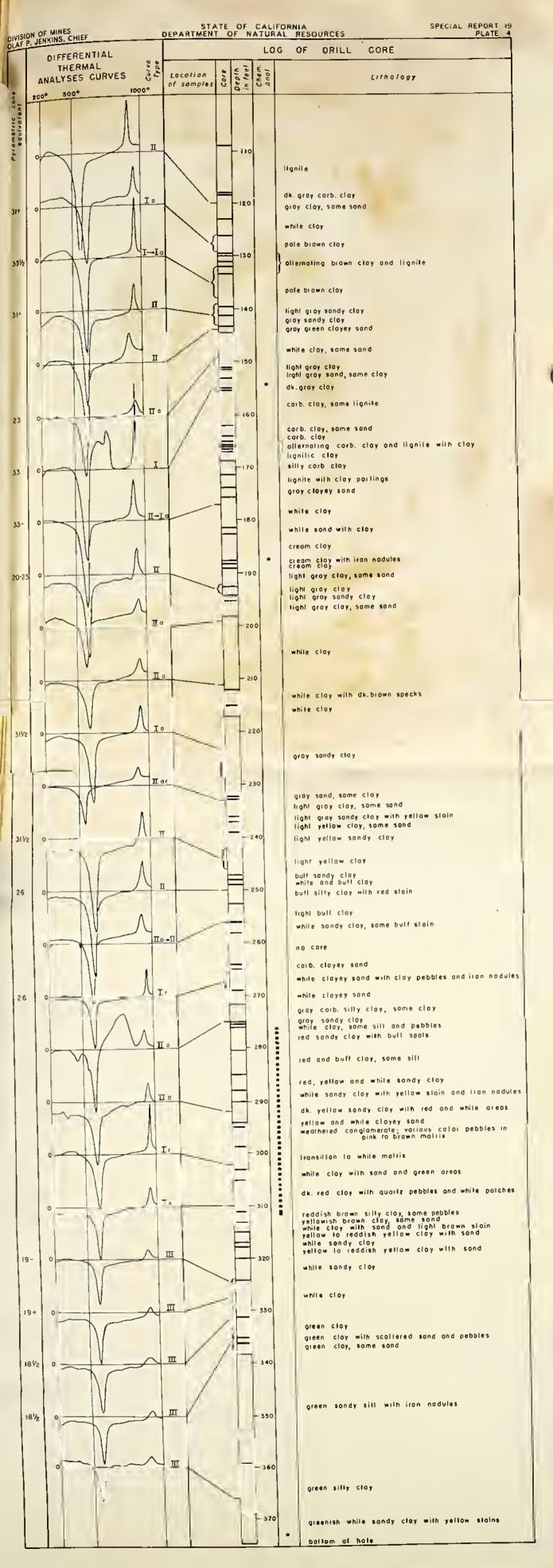
•




1000

By Mort D. Turner

GEOLOGIC MAP OF THE BUENA VISTA AREA, AMADOR COUNTY, CALIFORNIA


3000 5000 FEET 4000

.

LOG OF HOLE 18-1 BUENA VISTA AREA, AMADOR COUNTY, CALIFORNIA

1

